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The determination of fault, not in the legal sense but rather of the act of committing a 
violation, in cyclist-motorist collisions may be considered in terms of a “civilian’s 
perspective” and an “officer’s perspective”.  These perspectives may be represented 
by an ordered probit, and either two independent binary probit models or a single 
bivariate probit respectively.  Simulation enables comparison between the three forms. 
The ordered probit predicts fault with at least a 62.5% accuracy 99% of the time 
provided fault must be assigned to either party.  Without such provision, accuracy 
drops to 60.9% for the dataset upon which the other models are simulated.  In 
estimation of the two binary probit models, it was found best to use only observations 
where a party was solely at fault.  The result was a prediction with at least a 54.8% 
accuracy 99% of the time.  For the purposes of statistical efficiency, the models 
should not be estimated separately.  Thus a bivariate probit is used to simultaneously 
estimate the models.  Like the binary probit, it was found best to estimate the model 
from only sole fault.  The result was a prediction with at least a 55.6% accuracy 99% 
of the time.  In comparison of the models the difference in perspectives accounts for 
92% of the variation – suggesting the “civilian’s perspective” may better represent the 
decision process. 
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Chapter 1 
 

Introduction 
 

 

The relationship of factors contributing to the fault of parties involved in cyclist-

motorist collisions may be revealed through the use of various econometric models.  

For each model, such relationships may be justified with inferences regarding the 

physical meaning of the phenomena.  The potential to make valid inferences of 

physical meaning goes to motivation.  To further this motivation, the models are 

themselves selected for their hypothesized physical meaning.  The chapter begins 

with a discussion of motivation, followed by separately detailing the approaches of 

data oriented modeling and decision oriented modeling. 

 

1.1 Motivation 
 

The study is motivated by the potential to make valid inferences of physical meaning 

behind the factors contributing to the fault of parties involved in a cyclist-motorist 

collision.  Furthermore, the form of the model utilized may itself have physical 

meaning.  Even outside the context of cyclist-motorist collisions, the methods have 

broad application in both the public and private sector of society. 
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1.1.1 Application within the Public Sector 
 

Governments and public organizations look to models in order to evaluate existing 

and implement new programs, policies, etc.  Their interests are in evaluating both 

factors that may influence outcomes and also processes that may influence outcomes. 

 

In consideration of evaluating the factors that influence the outcome, if the study were 

to report that, say, the cyclist was more likely to be at fault when it is dark, programs 

may be put in place to provide cyclists with warning lights or policies could be made 

to prohibit cyclists out at night.  And, while it should be noted that, without further 

information as to why the phenomena occurs, such interpretations are essentially 

speculation as to a cause, they also are potentially viable explanations in a set of 

many viable explanations upon which public figures may choose to act.  As a matter 

of maintaining the science, the public figures acting in their role as decision makers 

may implement alternatives as hypotheses to be tested.  For example, here, they 

hypothesize that warning lights reduce the likelihood for a cyclist to be at fault, they 

implement a program to provide cyclists with such gadgets, and they wait to see 

whether there was a significant reduction in cyclist at fault collisions. 

 

In consideration of evaluating the processes that influence the outcome, consider the 

selection of the model.  Each model may be hypothesized to capture a certain process, 

such as the processes influencing the decision to assign fault to the individual parties 

involved in a collision.  Say it were hypothesized that the individual assigning fault 

just twirls the spinner from “The Game of Life®” modulus two, then the strength of a 

model using a uniform random distribution to represent such a decision making 

process may suggest whether this hypothesis may be accepted.  Policy makers could 

then modify the process if need be.  For the example of randomly assigning fault to 
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the parties involved, a strong model may suggest that they should investigate and 

potentially revamp their fault assignment methods. 

 

1.1.2 Application within the Private Sector 
 

Corporations, individuals and other private sector entities often look to models for the 

same reasons as found in the public sector: to evaluate existing and implement new 

programs, policies, etc.  The difference lies within the criteria with which they 

evaluate each.  Consider their interests in evaluating both factors that may influence 

outcomes and also processes that may influence outcomes. 

 

In consideration of factors that influence outcomes, private sector entities see how it 

may further their interests.  Should the study report that a cyclist was more likely to 

be at fault in when it is dark, a corporation may devise a new warning light system to 

sell to cyclists or an individual cyclist may choose to wear an illuminated vest.  Again, 

it is noted that these are plausible explanations in a set of many plausible explanations 

to describe the phenomena of a cyclist’s increased likelihood of fault given that the 

accident occurred while it was dark; it is up to the discretion of the entity to further 

study the relationships before proceeding with a plan. 

 

Another tool given the factors that influence outcomes is the ability to predict an 

outcome given a set of factors.  For example, an actuary on behalf of an insurance 

company may determine the risk associated with an individual cyclist or motorist of 

being at fault in a collision.  Another application in insurance is allocating blame 

when deciding claims since a strong model may be extrapolated to predict the fault of 

each party.   
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In consideration of the processes that influence the outcome, private entities, again, 

seek to further their interests.  Certain processes may describe certain outcomes.  If 

the determinations of fault were made by a judge, one might go about selecting a 

court based upon the model hypothesized to describe the decision process that favors 

a particular outcome.  For example, a motorist who committed various violations may 

seek a judge who decides cases by tossing a coin. 

 

1.2 Data Oriented Modeling 
 

Data oriented modeling examines correlations within the data to select the model to 

describe it.  An example of such modeling is creating a histogram, noting the bell-

shape and selecting a model with a standard normal or a Student’s t distribution.  Not 

that the approach is incorrect, it is just that it does not aim to describe why such 

distribution makes sense in the real-world.   

 

To its credit, the data oriented approach is an easy method to quickly capture the 

relationship of the variables in the dataset.  So, when the motivation is to create a 

model to determine the relationship of factors in cyclist-motorist collisions in terms of 

the available data, this is a quick and easily justifiable method.  The problem is that it 

does not describe the process by which the outcome is decided. 

 

1.3 Decision Oriented Modeling 
 

Decision oriented modeling selects the model based on how the data should relate 

rather than how it may in the dataset.  An example of such modeling is selecting a 

model with a standard normal distribution to describe error in a chemistry experiment.  

Granted error is by no means a “decision” per se, but it does reflect the formulation of 
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an outcome.  Indeed, the selection of a model requires an advanced understanding of 

the relationship of interest; however, positing one plausible relationship to compare 

with another plausible relationship may be used in gaining understanding of the 

relationship. 

 

Selecting a model requires qualitative insights and forethought.  For example, if it 

were known that cyclists were at least partially at fault 71% of the time (which they 

are in the dataset), one might simply create a model to reflect this proportion and do 

quite well.  Clearly, or at least reasonably, a model based on this information, while 

strong, is meaningless unless qualified by such limitations as those which bound the 

art of forecasting. 

 

For the case of how fault is assigned to a party involved in a cyclist-motorist collision, 

there are also many plausible processes describing that determination.  Here, the 

processes behind the decision are described in terms of hypothetical decision makers 

embodying the “civilian’s perspective” and “officer’s perspective” as defined below. 

 

1.3.1 A “Civilian’s Perspective” 
 

For the purposes of describing a “civilian’s perspective”, a “civilian” refers to a 

stereotype of the sort of generic, reasonable person who, when presented a 

hypothetical scenario of a speeding, intoxicated, heavily-armed motorist that 

overtakes and ultimately collides with a cyclist who failed to signal a right-hand turn, 

would be so disgusted by the severity of the motorist’s transgressions that the 

cyclist’s contribution would be disregarded.  To “civilians”, fault is relative.  Really 

bad conceals somewhat bad.  Thus, this blame game has an associated ordering from 

the driver at fault to the cyclist at fault with a category there between for, when 

assignment is indistinguishable, both at fault.  The “civilian’s perspective” may 
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describe the assignment of fault by insurance companies or courts interested in 

weighing the contribution of the parties to the situation at hand. 

 

1.3.2 An “Officer’s Perspective” 
 

For the purposes of describing an “officer’s perspective”, an “officer” refers to a 

stereotype of the sort high-caliber, impersonal individual who, when confronted with 

the same hypothetical scenario of a speeding, intoxicated, heavily-armed motorist that 

overtakes and ultimately collides with a cyclist who failed to signal a right-hand turn, 

would look at the motorist and mark the columns for speeding, intoxication and 

overtaking, and then look at the cyclist and mark the column for failure to signal a 

turn – checks in both rows, both are at fault.  To the “officer”, fault is absolute.  

Lesser wrongs do not equate to rights.  Thus fault is determined for the motorist, and 

fault is determined for the cyclist.  The determination of the fault of one party is made 

independent of the other.  The “officer’s perspective” may describe the assignment of 

fault by individuals entrusted by society to reserve judgment for the courts and 

operate fairly to enforce the law as written. 
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Chapter 2 
 

Literature Review 
 

 

In 2003, there was an estimated 100000 reported accidents involving cyclists and 

motorists in the United States of America of which 28000 were injury accidents and 

700 were fatal injury accidents (National Safety Council, 2004).  Many studies have 

been done to capture the relationship of variables present in vehicular accidents; some 

studies have gone further to discuss the affects of fault; and a few studies have even 

explicitly modeled the assignment of fault.  The contribution this study attempts to 

make is the consideration of the form of the model as a relation to the decision-

making process behind the assignment of fault; this consideration hence controls 

selection of an appropriate model for which to model the assignment of fault.  The 

literature reviewed breaks down into the three areas of factors affecting accidents, 

fault affecting accidents, and factors affecting fault. 

 

2.1 Factors Affecting Accidents 
 

The factors affecting accidents are discussed in many previous studies.  These types 

of factors recognized shaped the variables used in the model as discussed in the next 

chapter.  One factor is the effects as that of stress as discussed in Legree, Heffner, 
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Psotka, Martin and Medsker (2003).  Van der Flier and Schoonman (1988) discuss 

affects of time of day, change of shifts, age of driver, hours on duty, length of service 

and experience in terms of railway stop-signal abuse.  Hanowski, Wierwille and 

Dingus (2003) investigate fatigue in the context of local trucking.  The effects of 

various sleep related issues are shown in a study by Sagberg (1999). 

 

Regarding accident propensity, Stamatiadis and Deacon (1995) make various 

observations particularly with respect to aging.  They found middle-aged drivers to be 

safer than younger drivers and younger drivers to be safer than older drivers.  They 

assert that female drivers are on average safer than male drivers, the same relationship 

holds for younger drivers, but the relationship inverts for older drivers. 

 

2.2 Fault Affecting Accidents 
 

There are a few studies that include the fault of a party among the other factors 

affecting accidents.  Rerrari and Russell (2001) discuss the affect of fault in an 

accident as part of their biopsychosocial model of whiplash injuries.  Vernon, Diller, 

Cook, Reading, Suruda and Dean (2002) compared rates of “adverse driving events” 

including at-fault determinations for licensed Utah drivers with medical conditions.  

Underwood, Chapman, Wright and Crundall (1999) describe fault’s affect on the 

provocation of feelings of anger.  Stewart (2005) describes the individual assignment 

of responsibility and the implications on the emotional health of survivors of 

collisions.  Clarke, Ward and Jones (1998) used the driver “most at fault” to describe 

ten types of overtaking accidents.   

 

How fault affects seatbelt use is used in the context of the drivers’ risk assessments in 

Calisir and Lehto (1996).  Another idea relating to self-regulation is shown in Ball, 

Owsley, Stalvey, Roenker, Sloane and Graves (1998).   Ball et al. (1998) concludes 
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that older drivers who were determined to be at fault in a collision within the past five 

years are more likely to avoid such potentially challenging driving situations as rain, 

dark, and heavy traffic. 

 

Quddus, Noland and Chin (2002) analyzed motorcycle injury and vehicle damage 

severity with ordered probit models to determine that a motorcyclist was more likely 

to have severe injuries if determined to be at fault for the accident.  Dissanayake and 

Lu (2002) found a similar relationship between fault and severity except in the 

context of elderly drivers involved in fixed object crashes via two sets of sequential 

binary logistic regression models. 

 

Solnick and Hemenway (1995) discuss the affect of fault in terms of its affect on the 

“hit-and-run” in fatal pedestrian accidents.  They conclude that drivers are more 

likely to run when at fault, as suggested by a positive state of intoxication, or simply 

when escape seems easy.  Such interpretations of fault may be built upon as potential 

factors upon which to base the determination of fault. 

 

Fault was used by Al-Balbissi (2003) to identify reasons for the differences in 

accidents.  In such a manner McCartt, Northrup and Retting (2004) reviewed the 

diagrams and narrative descriptions found in police reports detailing ramp-related 

motor vehicle crashes in Northern Virginia to identify the type of accident and 

determine what factors influenced the at-fault driver.  Their study described the 

facility type, actions taken, and other characteristics.  With this they concluded with 

proposals for countermeasures that may be taken to mitigate the affects of the 

characteristics suggested to cause the problems, such as increased length of 

acceleration lanes to reduce sideswipe/cutoff crashes.   

 

A study by Gruder, Romer and Korth (1978) used a female to call randomly selected 

phone numbers to request for help.  Based on such factors as her fault for her troubles, 
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the telephone subscriber’s assistance was measured.  It was found that the victim’s 

dependency is a determinant for helping; and the greater the dependency the greater 

the helping.  A study by Peltzer and Renner (2004) describes the psychosocial effects 

of fault; that is the effect of fault with respect to others involved in the traffic 

accidents studied.  They conclude that, in the context of how South Africans cope 

with trauma, holding another party responsible lowers one’s psychological well-being.  

Gruder et al. (1978) and Peltzer and Renner (2004) contribute to this study by 

positing aspects that may affect the assignment of fault. 

 

2.3 Factors Affecting Fault 
 

The factors affecting fault are discussed in a few studies.  Legree, Heggner, Psotka, 

Martin and Medsker (2003) study how stress elevates at-fault crash risk.  Sjögren, 

Eriksson and Öström (1996) describe how drivers with “intrinsic medical factors” 

were often at fault and were even more so for the elderly group.  The increased 

likelihood for an elderly driver to be at fault was briefly acknowledged by McGwin 

and Brown (1999).  Raedt and Ponjaert-Kristoffersen (2001) attempt to predict at-

fault auto accidents of older elderly drivers based on tests administered to older 

drivers.  Hing, Stamatiadis and Aultman-Hall (2003) describe the negative impacts of 

multiple passengers on the probability an elderly driver is found at-fault in an 

accident.  A similar study shown in Preusser, Ferguson and Williams (1998) 

describing the effect of passengers in the context of younger drivers reveals that the 

presence of passengers is associated with greater risk of at fault collisions for drivers 

under twenty-four years of age.   

 

In the context of involvement in fatal vehicle accidents, Garretson and Peck (1982) 

found drivers that were found to be at fault in a wreck were found to have worse 

driving records than those drivers in the general driving population.  Elliot, Waller, 



 

11

Raghunathan, Shope and Little (2000) describe how the odds of one being at fault is 

increased by nearly 50% if that one had been at fault in an accident within the 

previous year.  In a later study, Waller et al. (2001) describe how the risk of being at 

fault in an accident decreases with years of licensure.  An earlier set of studies with 

similar conclusions is available in Chen, Cooper and Pinili (1995) and in Cooper, 

Pinili and Chen (1995).  Chen et al. found a driver previously determined to be at 

fault in an accident would be more likely to be involved in another such accident in 

the future.  Cooper et al. (1995) examined the effects of restrictions on licensure of 

novice drivers through the graduated licensing system. 

 

Retting Weinstein and Solomon (2003) find that, for motor vehicle accidents at stop 

signs, drivers under eighteen and drivers over sixty-five are more likely to be found at 

fault.  Kim, Li, Richardson and Nitz (1998) discuss the influences of age, gender and 

vehicle type on the risk of being at fault in an accident.  Yannis, Golias and 

Papadimitriou (2005) describe at-fault risk in terms of driver age and motorcycle 

engine size.  The paper most related to determining the fault of parties involved in a 

cyclist-motorist collision is the paper that does just that by Kim and Li (1996). 

 

Kim and Li (1996) utilized a logistical regression analysis of the likelihood of drivers 

being at fault as based on data collected by the police for the state of Hawaii from 

1986 to 1991.  The variables they made use of were motorist age and the square 

thereof, cyclist age and the square thereof, cyclist use of alcohol, cyclist helmet use, 

driver turning action, cyclist turning action, and rural area.  In their study, the square 

of driver’s age, the cyclist’s age, the cyclist’s use of helmet, and the driver’s turning 

action all implicated the driver; whereas the driver’s age, the square of the cyclist’s 

age, the cyclist’s use of alcohol, the cyclist’s turning action, and the rural area did not 

implicate the driver. 
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This study makes use of many of the same variables as these prior, including such 

functional relationships as the one utilized by Kim and Li (1996) to square the age.  

Indeed, while comparison will likely reveal the same relationship of the factors within 

the models created herein, such is not the purpose of the study.  Variables will be 

included and excluded based on availability and significance rather than for 

comparison to prior studies.  This study compares various models representing 

different perspectives on the decision to assign on party a violation, and, in that 

respect, it is a contribution to the field of modeling factors relating to the assignment 

of fault for a collision. 

 



 

13

 

 

 

 

Chapter 3 
 

Methodology 
 

 

Estimation of an econometric model finds a mathematical relationship between the 

data by fitting it to the model’s form.  However, the selection of the proper form is 

often a reflection of the relationship itself.  For the case of the determination of fault 

between a cyclist and a motorist, there are multiple plausible relationships.  Thus 

multiple models must be examined and compared in order to properly determine the 

relationship.  Here, models are based on two perspectives: (1) that of a civilian 

determining fault; and (2) that of an officer of the law determining fault. 

 

3.1 A Civilian’s Perspective 
 

Chapter 1 introduces the “civilian’s perspective” in terms of a stereotype of a 

“civilian” and how that “civilian” assigns fault to parties involved in a collision.  To 

summarize the perspective, fault is a relative.  That is there is an associated ordering 

from the driver at fault to the cyclist at fault with a category there between for, when 

assignment is indistinguishable, both at fault. 
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3.1.1 An Order 
 

A “civilian” weighs factors: factors implicating the cyclist tip the balance to the right: 

factors implicating the motorist tip the balance to the left.  Illustrated, this becomes 

the ordered fault line in Figure 3-1. 

 

 
FIGURE 3-1. Ordered Fault Line 

 

The designation of motorist at fault, both at fault, and cyclist at fault are ordered 

categories.  An ordered probit model may describe this relationship. 

 

3.1.2 Ordered Probit 
 

The ordered probit model has long been used to describe ordered alternative selection 

for such applications as the description of customer satisfaction (in, say, gradations of 

unsatisfied, somewhat unsatisfied, somewhat satisfied, and satisfied) in terms of such 

other factors as customer age, gender, location, etc.  In more general terms, the 

ordered probit model describes the ordered outcomes by assigning coefficients to the 

variables thought to explain the phenomena – the more positive a coefficient, the 

greater the outcome level.  For three outcomes ordered with motorist at fault on the 

low end, both at fault in the middle, and cyclist at fault in the high end, negative 
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coefficients pull the fault toward the motorist, positive coefficients pull the fault 

toward the cyclist, and both at fault is the neutral case. 

 

Description 
 

The ordered probit is used as it appears in Intercooled Stata® 8.1; commands to 

implement the ordered probit in the software are included in Appendix C.  The 

ordered probit associates a utility with each outcome in a form presented by Train 

(2003) as having observed and unobserved parts: 

 

 Un = b xnn  (3-1) 
 

where b xn is the observed portion of utility known as the probit index comprised of a 

vector of estimable coefficients, b, multiplied by the observation specific variables, xn, 

and n  is the unobserved factors, random variation or error.  It is assumed that utility 

is normally distributed about zero with a standard deviation of one.  This standard 

normal distribution is shown as: 

 

 t  = 1
2

exp −1
2
t 2

 
(3-2) 

 

The ordered probit assumes a distribution of standard normal, so, in calculation, it 

uses a cumulative standard normal distribution: 

 

 P t≤ y =  y  = ∫−∞
y 1
2

exp −1
2
t 2 dt

 
(3-3) 
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Probabilities are calculated based on the probability that the outcome lies between a 

set of cutoff points.  Thus it takes the form presented by Train (2003) and StataCorp 

(2003): 

 

 Pni = ki−b xn−ki−1−b xn  (3-4) 
 

where   is the standard cumulative normal distribution described in equation 3-3,     

b xn is the observed portion of the utility described in equation 3-1, and ki and ki-1 are 

the cutoff points above and below the predicted outcome respectively. 

 

The model is estimated by maximum-likelihood.  The log-likelihood function to be 

maximized takes the form: 

 

 LL = ∑
n=1

N

lnPni
 

(3-5) 

 

where Pni is the probability of the experienced outcome i for observation n, and N is 

the sample size.  For further discussion on numerical maximization, consult Train 

(2003). 

 

One indicator of the strength of the model compared to a naïve constant-only model is 

the pseudo r-squared, ρ2:  

 

 2 =1− LLendLLstart  
(3-6) 

 

where LLstart is the log-likelihood at starting with a naïve constant-only model, and 

LLend is the log-likelihood at convergence. 
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Simulation 
 

The ability for a model to perform accurately in simulation reflects upon the ability 

for the model to account for the relationship in the data.  It is also a method by which 

to compare models of varying structure, such as this ordered probit representing the 

civilian’s perspective with those models representing the officer’s perspective of the 

following section. 

 

Before simulation can occur, Stata® is used to predict the probabilities associated with 

each outcome for each observation.  The predicted probabilities are exported to a 

spreadsheet.  A Perl script is used to simulate (see Appendix B).  Since each of the 

three outcomes have a given probability, their sum for a given observation equal one.  

Thus a prediction may be made by comparing a random value between zero and one 

to the ranges of an outcome within the summation of the three.  The script makes a 

prediction in such a manner for each observation in order to obtain the percentage of 

observations whose outcomes were correctly predicted.  The script iterates over all 

observations 200000 times, each time recording the percentage of correctly predicted 

outcomes. 

 

When simulation is complete, the percentage accurately predicted are sorted and 

identified by their percentiles.  Plotting the percentiles on the percent accuracy creates 

an s-curve which visually presents the confidence in the accuracy of the model. 

 

3.2 An Officer’s Perspective 
 

Chapter 1 introduces the “officer’s perspective” in terms of a stereotype of an 

“officer” and how that “officer” assigns fault to parties involved in a collision.  To 
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summarize the perspective, fault is absolute.  That is the determination of the fault of 

one party is made independently of the other. 

 

3.2.1 Independent Estimation 
 

For an “officer” there are two determinations: (1) the fault of the motorist; and (2) the 

fault of the cyclist.  Two choices for each, a binary: at fault, not at fault.  A 

combination of two separate binary probit models, representing the assignment of 

fault to each party, forms a model that, in simulation, provides all outcome 

possibilities: motorist at fault; cyclist at fault; both at fault; and neither at fault.  

Alternatively, the role of a single “officer” making the determination for both may be 

acknowledged by using a single bivariate probit model. 

 

Taking it a step further, if these determinations are truly independent, then each will 

be based on the same characteristics.  This means that a cyclist solely responsible for 

a collision would have his or her fault determined based on the same characteristics as 

a cyclist who shares fault with the driver.  So the model may be estimated on either 

partial-fault or sole-fault designations (represented visually in Figure 3-2 and Figure 

3-3 respectively). 
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FIGURE 3-2. Binary Partial-Fault Tree 
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FIGURE 3-3. Binary Sole-Fault Tree 

 

Comparing models estimated with either partial-fault or sole-fault scenarios may 

provide insight into the strength of the independence of the determinations.  For 

example, the sole-fault case will likely prove a stronger predictor when extrapolated 

to determining partial fault, because, if the fault is not truly independently assigned in 

the partial case, the determination of sole fault will be less convoluted, the 

relationship clearer. 

 

The model will be estimated for both sole-fault and partial-fault designations.  But, 

before getting into the details of the binary probit and bivariate probit, a certain 

“problem” with estimation should be discussed. 
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Estimation Paradox 
 

There appears to be a slight problem with the estimation of the model.  Since neither 

at fault also includes fault undetermined, the category is improper to use in estimation.  

Thus the motorist not at fault in Figure 3-2 and 3-3 equates to cyclist solely at fault – 

a result that cannot yield the asserted full array of fault determinations! 

 

So there are discrepancies with what the model is estimating and what is meant to be 

shown.  For the partial-fault model, what had been shown as the categories of 

motorist not at fault and cyclist not at fault which ultimately combine to neither at 

fault, equates, in estimation, to cyclist solely at fault and motorist solely at fault 

which combine to a second category of both at fault.  For the sole-fault model has the 

same problem as the partial-fault model, but it also suggests without justification that 

the combination of a motorist solely at fault and a cyclist solely at fault makes both at 

fault. 

 

Visually, the partial-fault and sole-fault models break down as shown in Figure 3-4 

and Figure 3-5, respectively.  The discrepancies with respect to the desired 

breakdowns in Figure 3-2 and Figure 3-3 are highlighted.   
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FIGURE 3-4. A Misinterpretation of the Binary Partial-Fault Tree 
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FIGURE 3-5. A Misinterpretation of the Sole-Fault Tree 

 

This is not a paradox.  The models are independent by selection of explanatory 

variables used in estimation of the parties’ respective fault. 

 

Explanatory Variables 
 

While a model could literarily be distinguishing between a party at fault and another 

party at fault, if the variables explain nothing of the other party then they may not be 

used to determine the other party’s fault.  For example, determining the fault of the 

motorist may be done with such variables as driver intoxication, speeding, overtaking 

the cyclist, or vehicle turning; but without variables unrelated to the driver’s actions 

such as cyclist on the wrong side of the street.  The result is a model that implicates 

the driver but not the cyclist when extrapolated to the entire dataset in which fault is 
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acknowledged.  With this restriction of independence upon the explanatory variables, 

the design is not shown to be inappropriate. 

 

3.2.2 Binary Probit Models 
 

The binary probit model has long been used to describe selections between two 

alternatives for such applications as the description of going to work or staying home 

from work in terms of such other factors as snow, ice, temperature, career, etc.  A 

binary probit model describes a phenomena of two outcomes, here fault or the 

absence thereof, by assigning coefficients to the variables thought to explain the 

phenomena – the more positive a coefficient, the more it contributes to the likelihood 

of a party being at fault.  Since fault is assumed to be determined independently for 

the driver and cyclist, each determination is estimated by its own binary probit: the 

first binary probit describes whether or not the motorist is at fault; the second binary 

probit describes whether or not the cyclist is at fault.  The two are later combined by 

simulation. 

 

Description 
 

The probit is used as it appears in Intercooled Stata® 8.1; commands to implement the 

probit in the software are included in Appendix C.  The probit is based on observed 

and unobserved portions of utility as shown in equation 3-1.  As in the ordered probit, 

the model is assumed to be distributed standard normal by equation 3-2.  Probabilities 

are calculated based on the relative utility of outcomes shown by: 

 

 P Un1≥Un0  (3-7) 
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where Un1 and Un0 are the utilities for the first outcome and the base outcome 

respectively.  Since utilities are relative, the base case may be considered as having 

zero utility, so equation 3-7 becomes: 

 

 P Un1≥0  (3-8) 
 

where Un1 is the utility for the first outcome.  By plugging in the observed and 

unobserved parts for a utility presented in equation 3-1, this becomes: 

 

 P ≥−b xn  (3-9) 
 

where b xn is the observed portion of utility known as the probit index comprised of a 

vector of estimable coefficients, b, multiplied by the observation specific variables, xn, 

and n  is the unobserved factors, random variation or error.  Since the normal 

distribution is symmetric: 

 

 P ≤b xn  (3-10) 
 

The probability of the outcome is the area under the normal curve before the probit 

index, so the cumulative standard normal function in equation 3-3 is used.  Thus it 

takes the form of the binary probit presented by Train (2003) and the probit presented 

by StataCorp (2003): 

 

 
Pn1 = b xn  
Pn0 = 1−Pn1  

(3-11) 

 

where   is the standard cumulative normal distribution and b xn is the probit index.  

As with the ordered probit, the model is estimated via the method of maximum-
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likelihood.  The log-likelihood takes the form of equation 3-5 and the ρ2 is 

determined by equation 3-6. 

 

Simulation 
 

As stated before, simulation is an important tool to gauge the accuracy of the model 

and to compare with models of different forms.  But for the case of two separate 

models, simulation is required to join the two.  Simulation uses one binary probit 

model to predict the fault of the motorist and then the other binary probit model to 

predict the fault of the cyclist.  The combination provides all of the fault 

determination alternatives via four joint outcomes: 

 1. motorist at fault and cyclist at fault, 

 2. motorist at fault and cyclist not at fault, 

 3. motorist not at fault and cyclist at fault, and 

 4. motorist not at fault and cyclist not at fault. 

 

Once again, a Perl script is used to simulate (see Appendix B).  To begin, Stata® is 

used to predict the probabilities associated with each outcome for each observation.  

The predicted probabilities are exported to a spreadsheet.  The script is run by its 

interpreter for the simulation.  There are two probabilities for each observation, that 

of the cyclist being at fault and that of the motorist being at fault.  Thus a prediction 

may be made by comparing one random value between zero and one to the 

probability that the cyclist is at fault and another random value between zero and one 

to the probability that the motorist is at fault.  When these predictions are considered 

jointly, they describe all four fault determination alternatives.  The script makes a 

prediction in such a manner for each observation in order to obtain the percentage of 

observations whose outcomes were correctly predicted.  The script iterates over all 
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observations 200000 times, each time recording the percentage of correctly predicted 

outcomes. 

 

When simulation is complete, the percentage accurately predicted are sorted and 

identified by their percentiles.  Plotting the percentiles on the percent accuracy creates 

an s-curve which visually presents the confidence in the accuracy of the model. 

 

3.2.3 Bivariate Probit Model 
 

A bivariate probit model does what the binary probit does except it does it 

simultaneously estimates the two seemingly independent determinations for the 

parties.  In this manner, the knowledge that a single officer makes the determination 

can be utilized to increase statistical efficiency.  While such other popular models as 

the multinomial probit and the multinomial logit also simultaneously estimate the 

possible outcomes, these do not maintain the separation between the assignments of 

fault for each party.  Since the bivariate probit model determines fault for each party 

simultaneously, no special combination is required as done for the two binary probit 

models. 

 

Description 
 

The bivariate probit is used as it appears in Intercooled Stata® 8.1; commands to 

implement the bivariate probit in the software are included in Appendix C.  Like the 

models of the previous sections, the bivariate probit is based on the idea of observed 

and unobserved utility with a distributed standard normal as in equation 3-2.  

Additionally, bivariate probit takes into account the relation between the two 

equations.  Probabilities are calculated based on the probability that the outcome lies 

in the area before the probit index so calculation makes use of the cumulative normal 
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distribution in equation 3-3.  Thus it takes the form of the bivariate probit presented 

by StataCorp (2003): 

 

 

Pn11 = 2b xn , g zn ,
Pn10 = 2b xn ,−g z n ,−
Pn01 = 2−b xn , g z n ,−
Pn00 = 2−b xn ,−g z n ,  

(3-12) 

 

where subscripts 11, 10, 01 and 00 reference positive outcome for both equations, the 

first equation only, the second equation only and neither equation respectively, 2 is 

the bivariate standard normal distribution,   is the covariance in the errors of the two 

binary probits comprising this bivariate probit, and b xn and g zn are the probit indexes 

for the first and second equations respectively.  The method of maximum-likelihood 

is used to estimate the model.  The log-likelihood takes the form of equation 3-5. 

 

Simulation 
 

As with the binary probit, simulation remains an important tool to gauge the accuracy 

of the model and to compare with models of different forms; however, it is no longer 

utilized for the purposes of creating joint outcomes.  Since the bivariate probit 

estimates both outcomes simultaneously, it will also simultaneously provide 

predictions for the probability of both at fault, motorist at fault, cyclist at fault, and 

neither at fault. 

 

As before, Stata® is used to predict the probabilities associated with each outcome for 

each observation.  The predicted probabilities are exported to a spreadsheet which a 

Perl script uses to simulate (see Appendix B).  Since each of the four outcomes have a 

given probability, their sum for a given observation equal one.  Thus a prediction may 
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be made by comparing a random value between zero and one to the ranges of an 

outcome within the summation of the four.  The script makes a prediction in such a 

manner for each observation in order to obtain the percentage of observations whose 

outcomes were correctly predicted.  The script iterates over all observations 200000 

times, each time recording the percentage of correctly predicted outcomes. 

 

When simulation is complete, the percentage accurately predicted are sorted and 

identified by their percentiles.  Plotting the percentiles on the percent accuracy creates 

an s-curve which visually presents the confidence in the accuracy of the model. 

 

3.3 Adjuvant Tests and Statistics 
 

While the models are the focus of this study, various statistical tests are performed to 

test the significance of the variables making up the models, to test the strength of 

models in comparison with other models, and to test for significant changes in 

proportions accurately predicted.  The tests utilized are the t-test, two-sample t-test 

and the proportion z-test. 

 

3.3.1 t-Test 
 

The t-test is used to test the significance of each variable tested within the model.  

This significance is in terms of the variables’ coefficients’ differences from zero.  For 

a non-directional t-test the two hypotheses are: 

H0: b = 0: that the coefficient is not significantly different from zero; and 

HA, b ≠ 0: that the coefficient is significantly different from zero 
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where b is the coefficient.  Given a certain confidence level, here 62% (|t*| ≈ 0.87 for 

2500 degrees of freedom), then the null hypothesis may be rejected if the calculated t-

statistic is further away from zero than t*. 

 

Before discussing the mechanics of the test, the selection of the confidence level 

should be discussed.  Experience in modeling the data revealed a natural break in 

significance that corresponded with the 62% confidence level.  62% is rather low in 

statistics and is particularly undesirable when modeling because weak variables 

weaken the model.  However, this may be justified in terms of the effects of the 

tradeoff in Type I and Type II error.  Type I error results in false rejection of the null 

hypothesis; that is the model is estimated with weak variables.  Type II error results in 

failure to reject a false null hypothesis, that is the model does not include an 

important variable.  For the purposes of identifying factors contributing to the fault of 

parties in cyclist-motorist collisions, it is clearly detrimental to leave out an important 

factor by committing a Type II error; whereas accidentally providing decision makers 

with insignificant information may only be inefficient.  Thus, a low level of 

confidence is used. 

 

To test the significance of a variable the t-statistic is computed: 

 

 t = b−0
Std. Error  

(3-13) 

 

where b is the coefficient. The t-distribution has an associated degrees of freedom 

equal to the number of observations in the estimation sample less one.  For large 

numbers of observations, there is little variation in the shape of the distribution so a 

single t-statistic, t*, based on 2500 observations was used as the basis of these tests. 

The test proceeds by obtaining the t-statistic for each coefficient with equation 3-13.  

The absolute value thereof is compared with the absolute value of the t-statistic 
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corresponding with the 62% confidence level, |t*| ≈ 0.87.  If t > t*, then the null 

hypothesis is rejected and the coefficient stays in the model; else, the null hypothesis 

is not rejected and the coefficient is restricted to zero unless it is of special interest to 

the model (e.g. a study interested in the affect of weather on fault may choose not 

remove the weather variable despite its statistical insignificance).  For the purposes of 

noting the strength of each variable in the model, the results for the final model will 

include the t-statistic for each coefficient. 

 

3.3.2 Two-Sample t-Test 
 

The two-sample t-test is used in this study to compare the results of the models in 

simulation.  While the hypotheses of the test may reflect a preference for a particular 

model, none has been made for the widely varying perspectives presented in this 

study.  Thus, the hypotheses to be tested are: 

 H0: ν1 = ν2; there is not a significant difference; and 

 HA: ν2 ≠ ν2: there is a significant difference between the models 

where ν1 and ν2 are the arithmetic average accuracy of the first and second model 

respectively as found in simulation.  Runyon, Coleman and Pittenger (2000) note that 

the t-test will always be significant for large sample sizes.  Since the comparison is 

made between models of sample size of two hundred thousand iterations each, even a 

small variation in the models will be significant (and if it were not the computer could 

iterate infinitely more).  To account for this, Runyon et al. (2000) recommend using 

the omega squared, ω2, statistic to describe the significance. 

 

The statistic ω2 is interpreted similarly to the statistic r2 as a correlation coefficient.  

Literally, it means the independent variable – here, the form of the model – accounts 

for ω2 proportion of the variance in the dependent variable – here, the accuracy there 

reflected.  The statistic is calculated by: 
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 2 = t 2− 1
t2  n1 n2 − 1  

(3-14) 

 

where n1 and n2 are the sample sizes of the first and second sets respectively, and t is 

the t-statistic calculated for two independent samples: 

 

 
t =

1−2

[ 1n1∑x1−12n1−1 ][ 1n2∑x 2−2
2

n2−1 ]  

(3-15) 

 

where n1 and n2 are the sample sizes of the first and second sets respectively, x1 and x2 

are values from each sample, and ν1 and ν2 are the mean arithmetic average accuracy 

of the first and second samples (Runyon et al., 2003). 

 

For the purposes of this study, the threshold of the amount of variation for which to 

be accounted by a model for the difference between the models to not be considered 

trivial is arbitrarily set at 50%. 

 

3.3.3 Proportion z-Test 
 

The proportion z-test may be used to determine if the difference between the 

proportions of observations accurately predicted and of those expected to be so 

predicted.  This test may be directional or non-directional based on whether or not a 

preference for one outcome is made in the hypothesis being tested.  This study makes 

such a hypothesis in favor of a particular outcome, so the hypotheses to be tested are: 

 H0: p ≤ P0; there is not a significant increase; and 

 HA: p > P0: there is a significant increase in the proportion correctly predicted 
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where p is the proportion correctly predicted, and P0 is the proportion expected to be 

correctly predicted.  Unlike the t-test, this study does not make use of the z-test 

during the course of modeling so the risk associated with committing a Type II error 

is not significant because it does not preclude a factor from inclusion in the study.  

For this reason a high, 99% confidence level is used and the z-test is executed with 

the corresponding P of .01. 

 

From the z-distribution, obtain the z-statistic corresponding to the P of .01,                  

z* = 2.326.  Then calculate a z-statistic for the sampled proportion: 

 

 
z =

p−P0

 P01−P0n  

(3-16) 

 

where p is the proportion correctly predicted, and P0 is the proportion expected to be 

correctly predicted.  The null hypothesis is rejected if the z calculated for the sample 

proportion exceeds z*. 
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Chapter 4 
 

Data Description 
 

 

The dataset upon which this study is based was provided by the North Carolina 

Highway Safety Research Center on the campus of University of North Carolina – 

Chapel Hill.  The dataset contains details of each cyclist-motorist accident in North 

Carolina for the period of 1997 to 2002. 

 

4.1 Available Data 
 

There are 5639 observations, i.e. cyclist-motorist accidents, with accompanying 

details.  These details include the designation of fault, temporal factors, weather 

conditions, road surface conditions, lighting conditions, location features, road 

classification, posted speed limit, road geometry, traffic direction/division, traffic 

signs, paved or not, land use, municipal population, accident location with respect to 

intersections, whether alcohol was a factor, whether speeding was a factor, road 

defects, type of accident, position of the bicycle with respect to facility, direction of 

the bicycle with respect to traffic, geographical information, state of intoxication of 

both motorist and cyclist, demographic information of both motorist and cyclist, 

whether the cyclist wore a helmet, and the severity of the cyclist’s injury. 
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Additional variables were derived from the originals.  As discussed in Chapter 2, it 

has been recognized that there is a relationship with the square of age (Kim & Li, 

1996).  Other relationships were also tested including the square and square root of 

the speed limit and the logarithm of age.  Other variables were formed from outcome 

combinations; such as partial fault from the relationship that if one was at fault or 

both were at fault, then that one was at least partially at fault.  And other variables 

were formed by the combination of two explanatory conditions; such as weekend 

from day of week being either Saturday or Sunday.  While it is not improper to also 

create variables via such cross-classifications as gender and helmet use, such 

interaction terms were not created based on the limited number of observations. 

 

4.1.1 Variables Tested 
 

Many combinations of explanatory variables were used to estimate the models 

described in Chapter 3.  The idea is that the combination that most strongly defines 

the relationship would be used to estimate the final model1.  While every combination 

could eventually be tested, both the plethora of variables makes that impractical and 

also the random significant combination of potentially irrelevant variables makes that 

improper.  For the purposes here, variables were tested in combination and were 

pruned based on their significance to the model. 

 

The variables tested need to be themselves viable indicators.  For example, while 

geographic information such as the street name might have been a significant 

indicator of accident fault, it does not describe the actions that cause one party to be 

at fault.  Not only should the variable be relevant, but it should also best explain the 

phenomena.  For example, while road classification describes the quality of the road, 

                                                 
1 Here, however, the variables that strongly described one binary probit model were strictly copied into 
the forms for both bivariate probit models and the other binary probit model.  This enables comparison. 



 

36

the speed limit also describes the quality of the road but does so with greater 

precision and finer increments. 

 

There is a strong argument that when an important variable is not present in the 

dataset, irrelevant variables may become significant because they can be indicative of 

the missing information.  Such an argument would encourage the use of variables 

such as street names in the hopes that it, if significant, could reveal unobserved 

factors such as the precinct of the officer writing the accident report.  For the 

purposes of this study, that argument is headed only for variables with known 

correlations to relevant phenomena.  For example, ethnicity has a correlation with 

wealth which is correlated with education and sense of self 2.  Thus ethnicity may be 

used as an indicator for the explanatory variable for the relevant variables of 

education and sense of self. 

 

With that in mind, the following categories were not tested: temporal factors except 

weekend and weekday since weather better describes month, a Tuesday does not 

differ from a Wednesday, and lighting better describes the time of day; road 

classification, traffic direction/division, paved or not since speed limit describes the 

condition of the facility; municipal population since, while it may hint at exposure, it 

does not itself describe fault; accident location with respect to intersections since the 

signage also describe the type of intersection; whether alcohol was a factor since the 

cyclist and motorist are individually noted for drinking; road defects since this does 

not describe fault; geographical information since the jurisdiction should not affect 

the assignment of fault; and severity of the cyclist’s injury since the determination of 

fault should be independent of the severity of a party’s injury. 

                                                 
2 While ethnicity does not cause wealth and wealth does not cause ethnicity, historical factors beyond 
the bounds of this study created a relationship between ethnicity and education that seems to propagate 
itself into the twenty-first century.  Furthermore, it may be shown that race/ethnicity does not itself 
implicate a party by noting that the coefficients for these terms are not stable when estimating the 
model on an otherwise homogenous subset of the population. 
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4.1.2 Variables Used 
 

Of the many variables tested, the following were used in at least one of the models: 

ages of the motorist and the cyclist, their squares, and their logarithms; whether the 

driver was intoxicated; whether speed was a factor; speed limit and its square root; 

estimated vehicle speed; accident type involving a motorist turning or overtaking, and 

accident type involving the cyclist turning; weather conditions clear or rainy; whether 

accident occurred in a driveway; bicycle position in a bike lane, on a bike path, or in a 

side crossing; whether cyclist was traveling against traffic; lighting conditions; land 

use; ethnicity of the motorist as black, Hispanic, Native-American, or other; the 

vehicle type of sports utility vehicle or motorcycle; gender of the cyclist; whether the 

cyclist is black; whether the cyclist wore a helmet; presence of signage or signals; and 

whether or not it is a weekend. 

 

That was just an overview; the variables are discussed in an easy-to-follow, organized 

tabular format in the sections detailing the specific data used in estimation and 

simulation of the models (Table 4-1 thru Table 4-3).  With that list of variables in 

mind, consider the variables not included in estimation. 

 

4.1.3 Variables Excluded 
 

Many variables did not significantly affect the model3 as determined by the t-test 

described in section 3.3.1.  For example, only the vehicle types of sports utility 

vehicle and motorcycle were significantly different from car to prompt inclusion.  

While this was a common factor to prompt exclusion of a variable from the model, it 

                                                 
3 Some of these insignificant variables were kept in the models because they were significant in a 
separate model or were representative of some other interest to the study.  
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does not explain the exclusion of such seemingly significant variables as whether or 

not the cyclist was intoxicated. 

 

Indeed the state of intoxication of the cyclist is significant to the models.  The 

problem is that the cyclist does not regularly have this determined.  In the interest of 

efficient use of the already small number of observations, the variable is excluded. 

 

4.1.4 Data Limitations 
 

Before proceeding, the limitations of the dataset upon which this study is based 

should be acknowledged.  These limitations qualify the applicability of the models 

created. 

 

First, the term “fault” is not defined in its legal sense.  The dataset created the 

variable “fault” based on whether a party committed a violation as documented by the 

police officer at the scene from the evidence and witness testimony.  In fact, there is 

no field for the officer to designate a party to be “at fault” – such determination is 

reserved for the insurance companies and courts (see the sample police report form in 

Appendix A).   So, for the purposes of this study, the term “fault” is hereby defined as 

“propensity to commit a violation”; the term “at fault” is hereby defined as “in 

violation”.  While it may be argued that it would be more appropriate to describe this 

study as one of the relationship of factors contributing to the propensity to commit a 

violation of parties involved in cyclist-motorist collisions, such debate over semantics 

is unnecessary.  A dataset that acknowledged fault in the legal sense would provide 

more powerful conclusions; however this weaker set precludes neither the use of 

methods presented in this study nor the use of the inferences there based.  The 

conclusions are simply limited to the acknowledgement that a party was at fault for 
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contributing to a collision by committing a violation; the decision oriented models 

there based describe the determination of such violations. 

 

The second limitation is that the data refers only to that of North Carolina and may 

not be applicable outside of this area.  A third limitation is that the dataset does not 

(and could not) include all potentially important variables: there is no field regarding 

such police officer’s notes as the contribution of witnesses in determining the 

violations of the party; there is no way to know the variation in such things as the 

ability for a police officer to discern such difficult factors as the “intent” on the part 

of the motorist to hit the cyclist; and police reports do not have fields for such 

interesting factors as whether the cyclist was riding alone or in a group.  Additional 

limitations may apply with regard to reporting, uniformity in reporting standards over 

the time, temporal variations, etc.  Always be skeptical when interpreting statistics. 

 

4.2 Ordered Probit 
 

Table 4-1 summarizes the variables used in estimation and in simulation of the 

ordered probit model. 
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TABLE 4-1. Summary of Datasets Used for the Ordered Probit Model 
Estimation Dataset  Simulation Dataset Variable Min. Max. Mean  Min. Max. Mean  

Assignment  
Fault (-1 Motorist, 
     0 Both, 1 Cyclist) -1 1 0.413 -1 1 0.411 
 
Actions  
Speed was a Factor 0 1 0.013 0 1 0.013 
Est. Vehicle Speed (mph) 0 100 23.906 0 100 24.652 
Motorist Overtook Cyclist 0 1 0.089 0 1 0.094 
Motorist Turned 0 1 0.086 0 1 0.088 
Motorist Intoxicated 0 1 0.022 0 1 0.022 
Cyclist Turned 0 1 0.193 0 1 0.196 
Helmet Used 0 1 0.051 0 1 0.052 
 
Conditions 
Rainy Weather 0 1 0.038 0 1 0.039 
Dawn or Dusk 0 1 0.053 0 1 0.052 
Dark, Street Lighting 0 1 0.094 0 1 0.095 
Dark, no Street Lighting 0 1 0.084 0 1 0.087 
Weekend 0 1 0.259 0 1 0.259 
 
Position 
Accident on Driveway 0 1 0.079 0 1 0.077 
Cyclist in Bike Lane 0 1 0.037 0 1 0.038 
Cyclist on Bike Path 0 1 0.008 0 1 0.007 
Cyclist on Side Crossing 0 1 0.113 0 1 0.105 
Cyclist Facing Traffic 0 1 0.262 0 1 0.252 
 
Signage 
Traffic Sign  
     (Stop, Yield, etc.) 0 1 0.271 0 1 0.275 
Traffic Signal 0 1 0.111 0 1 0.119 
Other Traffic Control  
     (RR Crossing, etc.) 0 1 0.003 0 1 0.004 
 
Land Use 
Commercial Land Use 0 1 0.330 0 1 0.326 
 
Demographics 
Cyclist Age 1 90 24.956 1 90 25.141 
Logarithm Cyclist Age 0 4.5 3.010 0 4.5 3.020 
Cyclist Black 0 1 0.456 0 1 0.457 
Motorist Age 1 91 39.153 15 96 39.255 
Logarithm Motorist Age 0 4.51 3.575 2.71 4.56 3.578 
Number of Observations 3743   3700 

*unless otherwise specified, variables coded: 1 = yes; 0 = no 
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The estimation dataset represents the dataset for which each accident had a recorded 

value for each variable.  The simulation dataset is the same except it includes the 

possibility that neither is at fault and is further restricted to attempt to emulate the 

dataset of the models to follow.  In short, the ordered probit model is simulated on 

essentially the same dataset as the probit and bivariate probit models. 

 

Running a simulation of the ordered probit on the simulation dataset is unfair because 

the model can never predict the outcome of neither at fault.  This simulation is done 

merely for sake of comparison to the models that follow.  To gauge the effectiveness 

of the ordered probit, a simulation on the estimation dataset will be made. 

 

4.3 Binary Probit 
 

Table 4-2 and Table 4-3 summarize the variables used in estimation and in simulation 

of the binary probit models estimated by partial-fault and sole-fault respectively. 

 

TABLE 4-2. Summary of Datasets Used for the Partial-Fault Probit Models 
Estimation Dataset  Simulation Dataset Variable Min. Max. Mean  Min. Max. Mean  

Assignment 
Motorist at least Partially 
      at Fault 0 1 0.368 0 1 0.35 
Cyclist at least Partially 
      at Fault 0 1 0.797 0 1 0.76 
 
Actions 
Speed was a Factor 0 1 0.013 0 1 0.013 
Motorist Overtook Cyclist 0 1 0.091 0 1 0.093 
Motorist Turned 0 1 0.089 0 1 0.088 
Motorist Intoxicated 0 1 0.022 0 1 0.022 
Cyclist Turned 0 1 0.202 0 1 0.196 
Helmet Used 0 1 0.052 0 1 0.053 

(continued) 
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TABLE 4-2. Summary of Datasets Used for the Partial-Fault Probits (cont’d) 
Estimation Dataset  Simulation Dataset Variable Min. Max. Mean  Min. Max. Mean  

Conditions 
Clear Weather 0 1 0.819 0 1 0.818 
Dawn or Dusk 0 1 0.052 0 1 0.052 
Dark, Street Lighting 0 1 0.093 0 1 0.095 
Dark, no Street Lighting 0 1 0.086 0 1 0.087 
Weekend 0 1 0.259 0 1 0.259 
 
Position 
Accident on Driveway 0 1 0.079 0 1 0.077 
Cyclist in Bike Lane 0 1 0.039 0 1 0.04 
Cyclist on Bike Path 0 1 0.007 0 1 0.01 
Cyclist Facing Traffic 0 1 0.256 0 1 0.25 
Posted Speed Limit (mph) 3 60 38.365 3 60 38.236 
Square Root Speed Limit 1.73 7.75 6.127 1.73 7.75 6.12 
 
Signage 
Traffic Sign 
     (Stop, Yield, etc.) 0 1 0.279 0 1 0.275 
Traffic Signal 0 1 0.114 0 1 0.119 
Other Traffic Control 
     (RR Crossing, etc.) 0 1 0.003 0 1 0.004 
 
Land Use 
Commercial Land Use 0 1 0.322 0 1 0.326 
Institutional Land Use 0 1 0.017 0 1 0.017 
Agricultural Land Use 0 1 0.156 0 1 0.154 
Industrial Land Use 0 1 0.004 0 1 0 
 
Cyclist Demographics 
Cyclist Age 0 90 25.03 0 90 25.1 
Cyclist Age Squared 0 8100 873.3 0 8100 876.2 
Cyclist Gender 
     (0 Female, 1 Male) 0 1 0.851 0 1 0.85 
Cyclist Black 0 1 0.454 0 1 0.46 
 
Motorist Demographics 
Motorist Age 15 91 39.3 15 96 39.3 
Motorist Age Squared 225 8281 1822.4 225 9216 1823.8 
Vehicle Type: Motorcycle 0 1 0.005 0 1 0.005 
Sports Utility Vehicle 0 1 0.036 0 1 0.035 
Motorist Black 0 1 0.321 0 1 0.322 
Motorist Native-American 0 1 0.008 0 1 0.008 
Motorist Hispanic 0 1 0.011 0 1 0.011 
Motorist of Other Non- 
     White/Asian Ethnicity 0 1 0.021 0 1 0.021 
Number of Observations 3543   3702 

*unless otherwise specified, variables coded: 1 = yes; 0 = no 
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TABLE 4-3. Summary of Datasets Used for the Sole-Fault Probit Models 
Estimation Dataset  Simulation Dataset Variable Min. Max. Mean  Min. Max. Mean  

Assignment 
Motorist Solely at Fault 0 1 0.243 0 1 0.19 
Cyclist Solely at Fault 0 1 0.757 0 1 0.61 
 
Actions 
Speed was a Factor 0 1 0.012 0 1 0.013 
Motorist Overtook Cyclist 0 1 0.094 0 1 0.093 
Motorist Turned 0 1 0.081 0 1 0.088 
Motorist Intoxicated 0 1 0.019 0 1 0.022 
Cyclist Turned 0 1 0.230 0 1 0.196 
Helmet Used 0 1 0.055 0 1 0.053 
 
Conditions 
Clear Weather 0 1 0.825 0 1 0.818 
Dawn or Dusk 0 1 0.053 0 1 0.052 
Dark, Street Lighting 0 1 0.087 0 1 0.095 
Dark, no Street Lighting 0 1 0.086 0 1 0.087 
Weekend 0 1 0.266 0 1 0.259 
 
Position 
Accident on Driveway 0 1 0.090 0 1 0.077 
Cyclist in Bike Lane 0 1 0.036 0 1 0.04 
Cyclist on Bike Path 0 1 0.007 0 1 0.01 
Cyclist Facing Traffic 0 1 0.177 0 1 0.25 
Posted Speed Limit (mph) 3 60 38.931 3 60 38.236 
Square Root Speed Limit 1.73 7.75 6.174 1.73 7.75 6.12 
 
Signage 
Traffic Sign  
     (Stop, Yield, etc.) 0 1 0.268 0 1 0.275 
Traffic Signal 0 1 0.106 0 1 0.119 
Other Traffic Control  
     (RR Crossing, etc.) 0 1 0.003 0 1 0.004 
 
Land Use 
Commercial Land Use 0 1 0.280 0 1 0.326 
Institutional Land Use 0 1 0.016 0 1 0.017 
Agricultural Land Use 0 1 0.173 0 1 0.154 
Industrial Land Use 0 1 0.004 0 1 0 
 
Cyclist Demographics 
Cyclist Age 0 90 24.20 0 90 25.1 
Cyclist Age Squared 0 8100 831.14 0 8100 876.2 
Cyclist Gender  
     (0 Female, 1 Male) 0 1 0.851 0 1 0.85 
Cyclist Black 0 1 0.446 0 1 0.46 

(continued) 
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TABLE 4-3. Summary of Datasets Used for the Sole-Fault Probits (cont’d) 
Estimation Dataset  Simulation Dataset Variable Min. Max. Mean  Min. Max. Mean  

Motorist Demographics 
Motorist Age 15 91 39.4 15 96 39.3 
Motorist Age Squared 225 8281 1838.7 225 9216 1823.8 
Vehicle Type: Motorcycle 0 1 0.006 0 1 0.005 
Sports Utility Vehicle 0 1 0.034 0 1 0.035 
Motorist Black 0 1 0.323 0 1 0.322 
Motorist Native-American 0 1 0.008 0 1 0.008 
Motorist Hispanic 0 1 0.012 0 1 0.011 
Motorist of Other Non- 
     White/Asian Ethnicity 0 1 0.021 0 1 0.021 
Number of Observations 2959   3702 

*unless otherwise specified, variables coded: 1 = yes; 0 = no 
 

For both the partial-fault and sole-fault instances, the estimation dataset represents the 

dataset for which each accident had a recorded value for each variable.  The 

simulation dataset also requires each accident to have a recorded value; the difference 

is that it includes all designations of fault so that they may be compared with the 

predicted value. 

 

4.4 Bivariate Probit 
 

Because the bivariate probit is the simultaneous estimation of the two binary probit 

models of before, the same explanatory variables were used.  Thus, Table 4-2 and 

Table 4-3 also summarize the variables used in estimation and in simulation of the 

bivariate probit models estimated by partial-fault and sole-fault respectively. 
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Chapter 5 
 

Results 
 

 

Estimates and the simulations there based were made per the methodologies of 

Chapter 3 with the appropriate variables as discussed in Chapter 4.  These are the 

results of the ordered probit model, binary probit models, and bivariate probit models 

with corresponding simulations for verification and comparison purposes. 

 

5.1 Ordered Probit 
 

The ordered probit model’s estimates are shown in Table 5-1.  Figure 5-1 shows the 

results of simulation for the dataset on which the model was estimated. 
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TABLE 5-1. Ordered Probit Model 
Variable Coeff. St. Err. t-score  

Constant 
Cutoff 1 -0.9600 0.62 — 
Cutoff 2 -0.1531 0.62 — 
 
Actions    
Speed was a Factor -1.2394 0.19 -6.54 
Estimated Vehicle Speed (mph) 0.0276 0.00 15.43 
Motorist Overtook Cyclist -1.9240 0.10 -19.34 
Motorist Turned -1.1644 0.08 -14.65 
Motorist Intoxicated -1.1108 0.15 -7.55 
Cyclist Turned 0.9078 0.09 9.74 
Helmet Used -0.4680 0.11 -4.46 
 
Conditions 
Rainy Weather 0.1801 0.12 1.48 
Dawn or Dusk -0.0729 0.10 -0.71 
Dark, Street Lighting 0.2269 0.08 2.88 
Dark, no Street Lighting 0.5494 0.10 5.59 
Weekend -0.0570 0.05 -1.04 
 
Position 
Accident on Driveway 1.0687 0.14 0.06 
Cyclist Positioned in Bike Lane -0.2696 0.13 -2.14 
Cyclist Positioned on Bike Path -0.1263 0.25 -0.50 
Cyclist Positioned on Side Crossing -0.1460 0.07 -2.07 
Cyclist Facing Traffic 0.2274 0.06 3.90 
 
Signage 
Traffic Sign (Stop, Yield, etc.) 0.1066 0.06 1.85 
Traffic Signal 0.4566 0.08 6.01 
Other Traffic Control (RR Crossing, etc.) 0.5869 0.44 1.35 
 
Land Use 
Commercial Land Use -0.0053 0.05 -0.10 
 
Demographics 
Cyclist Age 0.0156 0.00 3.20 
Logarithm Cyclist Age -0.8801 0.12 -7.04 
Cyclist Black 0.2805 0.05 5.84 
Motorist Age -0.0131 0.01 -2.24 
Logarithm Motorist Age 0.6200 0.22 2.77 
Number of Observations  3743 
Log-Likelihood at Constants  -3454 
Log-Likelihood at Convergence  -2386 
ρ2  0.3094 

*unless otherwise specified, variables coded: 1 = yes; 0 = no 
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FIGURE 5-1.  Ordered Probit on Estimated Dataset 

 

5.1.1 Accuracy 
 

The ordered probit has a pseudo r-squared, ρ2, of 0.3094, which means it predicts 

better than a naïve constant-only model.  In simulation the model was, on average, 

about 64.0% accurate; additionally, one could expect, with 99% confidence, the 

model to be at least 62.5% accurate.  For a dataset where both are at fault 16.9%, the 

motorist is at fault 20.9% and the cyclist is at fault 62.2% of the time, another naïve 

constant-only model could simply blame the cyclist and be correct 62.2% of the time.  

While the ordered probit model’s high accuracy may not seem quite so impressive 

when compared to the “blame the bike” model, bear in mind that the model also may 

explain a relationship between factors. 
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The stability of the model should also be noted.  How the explanatory variables affect 

the outcome remained similar during model construction.  Also, the core model is 

strong; for example there was less than a percentage point drop in accuracy given the 

omission of such seemingly important variables as the presence of traffic signs, traffic 

signals and other controls. 

 

5.1.2 Assumptions 
 

Before interpreting the model, a quick recap of the assumptions on which it is based.  

The ordered probit model assumes a civilian’s perspective by assigning fault based on 

the severity of the offence.  For example, if the motorist was both intoxicated and also 

overtaking the cyclist, those two large negative coefficients are a difficult 

combination for the cyclist’s offences to outweigh.  Thus the model seems to perform 

as expected. 

 

The problem with this assumption is that it neglects the outcome of neither at fault or 

fault undetermined.  This means if the model were to be extrapolated to the dataset on 

which fault was acknowledged, it would always predict that outcome incorrectly.  

Since the neither at fault outcome only affects about four percent of the observations, 

it still correctly predicts, with 99% confidence, at least 60.9% of the outcomes as 

shown in Figure 5-2. 
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FIGURE 5-2. Ordered Probit on Data where Fault Acknowledged (incorrect) 

 

Since extrapolating a model to a dataset where it cannot correctly predict an outcome 

is incorrect, interpretations based solely upon it are also incorrect.  However, this 

does have value in making comparisons which will be discussed further along with an 

application of the model. 

 

5.1.3 Interpretation 
 

There are a few stages to interpreting the model.  The first is to see whether it 

describes the relationship it is intended to well; something the mean accuracy of 

64.0% suggests it does.  The second is to list variables by their coefficient’s sign as in 

Table 5-2; here, negative weights on the fault of the motorist and positive weights on 

the fault of the cyclist.  The third is to use personal experience to hypothesize and 
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interpret the meaning of the coefficients in support of the purported effect of each 

variable. 

 

TABLE 5-2. Ordered Probit Model’s Variables by Implication 

Motorist Cyclist 
Helmet Used 

Logarithm Cyclist Age 

Motorist Age 

Motorist Intoxicated 

Dawn or Dusk 

Speed was a Factor 

Motorist Overtook Cyclist 

Motorist Turned 

Commercial Land Use 

Cyclist in Bike Lane 

Cyclist on Bike Path 

Cyclist on Side Crossing 

Weekend 

Estimated Vehicle Speed 

Cyclist Age 

Logarithm Motorist Age 

Dark, Street Lighting 

Dark, no Street Lighting 

Cyclist Turned 

Rainy Weather 

Cyclist Facing Traffic 

Cyclist Black 

Accident on Driveway 

Traffic Sign 

Traffic Signal 

Other Traffic Control 
 

Begin with the factors that implicated the motorist.  A helmet does not affect the 

motorist, but it does suggest a more responsible cyclist thus implicating the motorist.  

The logarithm of the cyclist’s age, which suggests the motorist at fault, must be 

interpreted with the cyclist’s age, which suggests the cyclist is at fault, the net effect 

still places blame with the motorist for increases in cyclist’s age but with a plateau at 

age 40.  Clearly a confirmed state of motorist intoxication implicates a driver.  Dawn 

or Dusk suggests that while the cyclist should still be visible to the motorist thus 

implicating the motorist.  When speed is a factor, that is the motorist was speeding, 

the driver is, as expected, implicated.  Such potentially dangerous actions of a 

motorist as overtaking the cyclist and turning accordingly implicated the motorist.  
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Commercial land use could suggest either density of curb cuts or a motorist’s mental 

state as a characteristic of trip purpose, and may be justified in implicating the driver.  

When a cyclist is not located in a traffic lane, it follows that blame may lie with the 

motorist for potentially entering the cyclist’s space.  While not clear how a weekend 

may implicate the motorist, it could be justified by an argument relating to the 

mentality of the recreational cyclist. 

 

Continue with the factors that implicate the cyclist.  While not immediately clear why 

greater estimated vehicle speeds implicate the cyclist instead of the motorist, it may 

suggest that the motorist could not have reacted to a cyclist’s error.  The logarithm of 

the motorist’s age, which suggests the cyclist at fault, must be interpreted with the 

motorist’s age, which suggests the motorist is at fault, the net effect still places blame 

with the cyclist for increases in motorist’s age but with a plateau at age 40.  Darkness 

implicates the cyclist, suggesting that the cyclist does not adequately equip the bike 

with adequate lighting.  Clearly the potentially dangerous action of a cyclist turning 

may implicate the cyclist.  Rainy weather implicating the cyclist suggests that the 

bike lacks adequate lighting, that a wet cyclist is a reckless cyclist (or at least a more 

accident-prone cyclist), or a combination of both.  Facing traffic, while the law for 

pedestrians on the roadway, is generally illegal for cyclists thus implicating them.  

While ethnicity/race in itself does not implicate the cyclist, being black may, via 

correlations external to this study4, reflect upon some other characteristics that do 

implicate the cyclist.  An accident on a driveway implicates the cyclist because they 

are not expected, particularly given the motorist’s generally reduced field of vision on 

such facility.  Traffic controls implicate the cyclist probably because of bike’s limited 

stopping and strenuous restarting and, hence, cyclist’s general disregard for traffic 

controls. 

 
                                                 
4 For example, ethnicity/race may, for historical reasons external to this study, be correlated with 
wealth. 
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This interpretation of the variables is merely one interpretation of many possible 

interpretations.  It should also be noted, that for future interpretation, correlation is 

not causation.  Cyclists will not be absolved of fault by simply removing the traffic 

controls which implicate them.  It should also be noted that absence of evidence is not 

evidence of absence.  There may very well be other more significant factors than 

those highlighted in the model.  As described in Chapter 1, this interpretation should 

be considered as a start to the process of finding which factors implicate which party, 

how, and why. 

 

5.1.4 Application 
 

The ordered probit model has many applications.  The variables may be interpreted in 

terms of their respective coefficients in order to determine which factors implicate the 

driver or cyclist, how they do so, and why the do so.  From this, policy decisions may 

be made to, say, supply lights and reflective vests to increase visibility of the cyclist 

at night, if this were determined to be the reason that darkness implicates the cyclist. 

 

Another application of the model is to gauge how fault is determined, or for a quick 

case study here, how it is not determined.  Based on the assumption that fault is 

determined by the civilian’s perspective, perhaps the determination of neither at fault 

is based on the same factors.  Given the ordered fault line, if neither were at fault, 

then neither the cyclist nor the motorist would have factors weighing the 

determination; that is, the neither at fault would overlap the both at fault 

determination.  So, simulating with the assumption that a prediction of both at fault 

equates to both neither at fault and both at fault, arrive at the s-curve in Figure 5-3. 
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FIGURE 5-3. An Application of the Ordered Probit in a Case Study 

 

The simulation of this modified ordered probit model on the dataset in which fault 

was acknowledged shows the model is, with 99% confidence, at least about 63.17% 

accurate.  Compared with the original ordered probit model simulated on the same 

dataset in Figure 5-2 and its approximately 60.87% accuracy at the 99% confidence 

level, the modified model seems better.  However, the original lacked the ability to 

predict the case of neither at fault when it occurred, so the possibility that the 

improvement is random chance must be examined. 

 

For the 3700 observations 159 were neither at fault.  The difference in accuracy of the 

models at the 99% confidence level is approximately 2.3%.  Thus it predicted an 

additional 85 observations correctly.  As a percentage, it predicts neither at fault as 

both at fault approximately 53.5% of the time.  Using a proportion z-test to compare 
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that to the expected 16.9% correctly predicted by chance, it is shown that this 

improvement is beyond random variation for the 99% confidence level (z = 12.3). 

 

This means that, for the model to correctly predict the outcome, there is a balance 

between the characteristics that implicate either party given the neither at fault 

outcome.  The ability to predict the outcome may have been higher, except the 

category of neither at fault also includes fault undetermined.  Further study may be 

useful in revealing potential patterns, or problems, in the lack of assignment of fault. 

 

5.2 Binary Probit 
 

The two sets of binary probit models were estimated, one on the partial-fault dataset 

and the other on the sole-fault dataset.  Simulation took place on the dataset on which 

fault was acknowledged.  Figure 5-4 and Figure 5-5 show the results of each 

simulation for the partial-fault estimated model and the sole-fault estimated model, 

respectively. 

 



 

55

 
FIGURE 5-4. Binary Probit Partial-Fault on Data where Fault Acknowledged 
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FIGURE 5-5. Binary Probit Sole-Fault on Data where Fault Acknowledged 

 

5.2.1 Accuracy 
 

The partial-fault estimated binary probit models, when combined in simulation, were, 

on average, 53.5% accurate; additionally one could expect, with 99% confidence, the 

model to be at least 51.9% accurate.  The sole-fault estimated binary probit models, 

when combined in simulation, were, on average, 56.2% accurate; additionally one 

could expect, with 99% confidence, the model to be at least 54.8% accurate.  Clearly 

the sole-fault estimated model was better; however there is more to want. 

 

The binary probit model to predict whether the cyclist was at fault has a pseudo r-

squared, ρ2, of 0.3983.  The binary probit model to predict whether the motorist was 

at fault has a pseudo r-squared, ρ2, of 0.3599.  While both models predict better than 
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the naïve constant-only model they are compared to, the joint probability of two 

independent determinations creates an inefficient model.  That is if there is, say, a 

90% chance of getting something right and, say, a 60% chance of getting something 

right then the probability of getting both correct together is their product or a 54% 

chance.  This is a problem of elementary probability and a problem of the assumption 

of independence of assignment when neither assignment is perfectly identified in 

terms of the variables.  Part of this problem may be captured by acknowledging the 

variation in fault assignment by a single entity who assigns fault to each party for 

each observation.  The simultaneous estimation used in the bivariate probit that 

follows this discussion takes that into account. 

 

To the binary probit model’s credit, it is stable across estimation sets.  How the 

explanatory variables affect the outcome remained similar during model construction.  

Also, the core model is strong; for example there was less than a percentage point 

drop in accuracy given the omission of such seemingly important variables as the 

presence of traffic signs, traffic signals and other controls. 

 

5.2.2 Assumptions 
 

Before interpreting the model, a quick recap of the assumptions on which it is based.  

The binary probit models are based on the assumption of an officer’s perspective by 

independently assigning fault to each party, the combination of which encompasses 

all fault assignment outcomes.  For example, if one model determines the motorist to 

be at fault and the other model determines the cyclist to be at fault, then the 

combination of the two is the motorist is at fault and the cyclist is at fault – both are at 

fault.  The accuracy of the model seems to suggest that it performs as expected. 
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5.2.3 Interpretation 
 

The sole-fault estimated binary probit models performed better than the partial-fault 

estimated binary probit models.  This may be interpreted to mean, as hypothesized in 

section 3.2.1, that the determination of sole fault is less convoluted, that the 

relationship is clearer, than that for partial fault. 

 

Further interpretation of this model is unnecessary as these variables maintain their 

relationship in the stronger, bivariate probit model that follows this discussion of the 

binary probit models. 

 

5.2.4 Application 
 

While these binary probit models are not the strongest models that will be presented 

for these explanatory variables, it does have its own set of applications.  For starters, 

it may be used to see how well the variables independently affect the assignment of 

fault to a single party.  The binary probit may also be used as a comparison by which 

to see how great of role the variation of the entity assigning fault has on the precision 

of that assignment. 

 

5.3 Bivariate Probit 
 

The sole-fault estimated bivariate probit model’s estimates are shown in Table 5-3.  

Figure 5-6 shows the result of simulation for the dataset on which fault was 

acknowledged.  For comparison, Figure 5-7 shows the result of simulation on the 

same dataset for the partial-fault estimated bivariate probit model. 
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TABLE 5-3. Bivariate Probit Model 
Motorist Solely at Fault  Cyclist Solely at Fault Variable Coeff. St. Err. t-score  Coeff. St. Err. t-score  

Constant 
Constant -0.6371 0.23 -2.8 0.8209 0.24 3.36 
 
Actions 
Speed was a Factor 0.3946 0.12 3.22 — — — 
Motorist Overtook Cyclist 1.3226 0.11 12.37 — — — 
Motorist Turned 1.1364 0.10 11.51 — — — 
Motorist Intoxicated 0.5185 0.13 3.99 — — — 
Cyclist Turned — — — 1.3474 0.12 11.27 
Helmet Used — — — -0.3644 0.11 -3.44 
 
Conditions 
Clear Weather 0.0455 0.07 0.63 — — — 
Dawn or Dusk 0.1902 0.12 1.56 -0.0585 0.13 -0.46 
Dark, Street Lighting -0.0601 0.11 -0.54 0.3090 0.11 2.73 
Dark, no Street Lighting -0.3765 0.12 -3.25 0.0912 0.11 0.82 
Weekend 0.0430 0.07 0.62 -0.0027 0.07 -0.04 
 
Position 
Accident on Driveway -1.5864 0.30 -5.22 1.8862 0.23 8.27 
Cyclist in Bike Lane — — — -0.3062 0.11 -2.79 
Cyclist on Bike Path — — — 0.1403 0.11 1.26 
Cyclist Facing Traffic — — — 0.6603 0.07 9.24 
Posted Speed Limit (mph) -0.0084 0.00 -2.45 — — — 
Square Root Speed Limit — — — 0.0051 0.04 0.14 
 
Signage  
Traffic Sign  
     (Stop, Yield, etc.) 0.1244 0.07 1.68 0.5033 0.08 6.37 
Traffic Signal -0.2100 0.11 -1.99 0.6590 0.10 6.28 
Other Traffic Control   
     (RR Crossing, etc.) -0.2951 0.80 -0.37 — — — 
 
Land Use 
Commercial Land Use 0.2642 0.07 3.98 -0.1433 0.07 -2.07 
Institutional Land Use 0.2260 0.30 0.75 — — — 
Agricultural Land Use 0.0791 0.09 0.9 — — — 
Industrial Land Use — — — 0.2631 0.42 0.63 
  
Cyclist Demographics 
Cyclist Age — — — -0.0478 0.01 -5.76 
Cyclist Age Squared — — — 0.0005 0.00 4.05 
Cyclist Gender   
     (0 Female, 1 Male) — — — 0.0503 0.06 0.85 
Cyclist Black — — — 0.2773 0.06 4.54 

(continued) 
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TABLE 5-3. Bivariate Probit Model (cont’d) 
Motorist Solely at Fault  Cyclist Solely at Fault Variable Coeff. St. Err. t-score  Coeff. St. Err. t-score  

Motorist Demographics 
Motorist Age -0.0080 0.01 -1.09 — — — 
Motorist Age Squared 0.0001 0.00 1.18 — — — 
Vehicle Type: Motorcycle -0.5304 0.65 -0.82 — — — 
Sports Utility Vehicle -0.0468 0.20 -0.24 — — — 
Motorist Black -0.1147 0.05 -2.12 — — — 
Motorist Native-American -0.2457 0.12 -1.98 — — — 
Motorist Hispanic 0.2952 0.10 2.98 — — — 
Motorist of Other Non- 
     White/Asian Ethnicity 0.1142 0.25 0.46 — — — 
Number of Observations  2959 
   -1.000 

For Motorist Equation: 
     Log-Likelihood at Constants  -1641 
     Log-Likelihood at Convergence  -1050 
For Cyclist Equation: 
     Log-Likelihood at Constants  -1640 
     Log-Likelihood at Convergence  -987 
For Full Model: 
     Log-Likelihood at Comparison  -2037 
     Log-Likelihood at Convergence  -1408 

*unless otherwise specified, variables coded: 1 = yes; 0 = no 
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FIGURE 5-6. Bivariate Probit Sole-Fault on Data where Fault Acknowledged 
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FIGURE 5-7. Bivariate Probit Partial-Fault on Data where Fault Acknowledged 

 

5.3.1 Accuracy 
 

The sole-fault estimated bivariate probit model was, on average, 57.0% accurate; 

additionally one could expect, with 99% confidence, the model to be at least 55.6% 

accurate.  The partial-fault estimated bivariate probit models was, on average, 54.8% 

accurate; additionally one could expect, with 99% confidence, the model to be at least 

53.2% accurate.  Clearly the sole-fault estimated model was better. 

 

Whether it was worthwhile estimating the two binary probit models with a single 

bivariate probit model is shown by whether  , the covariance in the errors of each 

binary probit model, is significantly different from zero.  For both the partial-fault 

estimated and sole-fault estimated models,   was found to be significantly different 
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from zero at the 99.99% confidence level.  Thus, it is shown that the bivariate probit 

model is statistically better than the two binary probit models because the two binary 

probit decisions are not independent – that is they share something such as, for 

example, a common decision maker. 

 

It is worth noting the stability of the bivariate probit model.  How the explanatory 

variables affect the outcome remained similar during model construction.  Also, the 

core model is strong; for example there was less than a percentage point drop in 

accuracy given the omission of such seemingly important variables as the presence of 

traffic signs, traffic signals and other controls. 

 

5.3.2 Assumptions 
 

Before interpreting the model, a quick recap of the assumptions on which it is based.  

Like the binary probit models of the previous section, these are based on the 

assumption of an officer’s perspective by independently assigning fault to each party, 

the combination of which encompasses all fault assignment outcomes.  The difference 

is that the bivariate probit also takes into account that the determination of fault it 

made by a single entity and, through simultaneous estimation, it estimates the 

observation-specific variations.  The accuracy of the model seems to suggest that it 

performed as expected. 

 

Another assumption, derived from the results of the binary probit models that the 

sole-fault estimation is better than the partial-fault estimation also holds true by the 

comparison of the simulations of the bivariate probit models estimated by each. 
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5.3.3 Interpretation 
 

There are a few stages to interpreting the bivariate probit model.  The first is to see 

whether it describes the relationship it is intended to well; something the mean 

accuracy of 57.0% suggests it does.  The second is to separate the estimation sets of 

the two parties’ fault as done in Table 4-3, above.  The third is to acknowledge the 

coefficient’s sign for each of the variables by estimation set; here negative suggests 

the party is not at fault and positive suggests the party is at fault.  The fourth step is to 

provide some sort of justification based on personal experience, etc. for the variable 

to affect in the way that it is purported to. 

 

As with the inferences made upon any model, those here reflect a single plausible 

interpretation of many plausible interpretations.  Before implementing such 

interpretations, they should be further considered outside of speculation by experts or 

they should be regarded as hypotheses to be tested.  With that caveat, possible 

interpretations are here provided for the motorist’s equation and the cyclist’s equation. 

 

Consider the factors contributing to the motorist’s fault.  The net affect of the 

motorist’s age terms suggest a driver less and less likely to be found in violation up to 

the age of forty whence he or she becomes more and more likely to be found in 

violation; this suggests that young and elderly drivers are particularly prone to 

committing violations in cyclist-motorist collisions.  A confirmed state of motorist 

intoxication implicates the driver, probably because this is itself a violation.  When 

speed is a factor, the motorist is implicated; this may be because speeding is 

dangerous and correlates to issuance of a violation.  Likewise, such hazardous 

movements as the motorist overtaking the cyclist and turning strongly implicate the 

motorist; this is probably because these are themselves acts warranting issuance of a 

violation.  If the accident occurred on a driveway, the motorist is less likely to be 
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found at fault; this may be related to acknowledgment of the motorist’s limited field 

of vision.  Clear weather suggests the driver is more likely to be found in violation; 

this may be because the motorist behaves less cautiously in good weather.  The 

lighting conditions of dark suggest the motorist is not in violation whereas that of 

twilight implicates the motorist; this is possibly because the motorist was not 

expected to see a cyclist in the dark but was expected to see the cyclist given adequate 

light. 

 

Commercial land use, institutional land use, and agricultural land use all, to varying 

degrees, implicate the motorist as compared to residential land use; this may be a 

result of the mentality of a driver when within a zone – a function of trip purpose.  

Weekend also implicates the motorist; a result potentially stemming from the same 

reasons land use implicates the motorist.  The vehicle types of sports utility vehicle 

and motorcycle both suggest their drivers are not to be found in violation; this may be 

a result of the trip purpose as reflected by the choice of vehicles.  Before continuing, 

it is worth restating that ethnicity/race is merely an indicator variable to represent 

various potential correlations external to this study.  So, as compared to white and 

Asian motorists, black and Native-American motorists are less likely to be found in 

violation; one possible, however extremely speculative, interpretation of this 

phenomena is that the ethnicity of a driver of a vehicle reflects upon a set of values 

that encourage a more vigilant command of the vehicle.  Likewise, in comparison to 

white and Asian motorists, Hispanic and other ethnicities are more likely to be found 

in violation; the reasons for this may also reflect on a set of values governing control 

of the vehicle. 

 

Greater posted speed limits absolve the motorist; this may be because the higher 

speed limits reflect better driving facilities providing the motorist more control over 

the vehicle.  The presence of traffic signs implicates the motorist; it is possible that 

this is merely a reflection of the presence of an intersection or other change in traffic 
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flows for which the driver may not properly observe a cyclist.  The presence of traffic 

signals and other traffic controls suggest that the motorist is not in violation; in 

contrast with the potential cause of the phenomena observed with traffic signs, signals 

demand compliance by the motorists independent of what they may fail to see. 

 

Consider the factors contributing to the cyclist’s fault.  The net affect of the cyclist’s 

age terms, as with the motorist, suggest that with age a cyclist is less and less likely to 

be found in violation up to about 49 whence he or she becomes more and more likely 

to be found in violation; and, as with the motorist, this suggests that young and 

elderly cyclists are particularly prone to committing violations in cyclist-motorist 

collisions.  The use of the helmet suggests the cyclist to not be at fault; while lack of 

helmet use does not likely warrant issuance of a violation, it may indicate a more 

responsible cyclist.  Cyclist turning implicates the cyclist; this suggests as with the 

ordered probit, the action is executed in a dangerous matter.  The lighting conditions 

of dark suggest the cyclist is in violation whereas that of twilight suggests otherwise; 

this is possibly because the cyclist may not provide adequate warning illumination at 

night which does not itself explain why a lit street still suggests fault be with the 

cyclist but may be explained by a legal requirement to maintain adequate warning 

lighting between sunset and the next sunrise. 

 

A cyclist positioned in a bike lane is less likely to be found at fault; perhaps because 

the bike lane is a legal force-field similar to a crosswalk for a pedestrian.  A cyclist 

positioned on a bike path is more likely to be found at fault; perhaps this is related to 

an ill-founded sense that the cyclist always has the right-of-way.  An accident on a 

driveway implicates the cyclist; potentially because cyclists are not expected on this 

facility, particularly given the motorist’s generally reduced field of vision on such 

facility.  Commercial land use suggests the cyclist is not at fault; this may reflect on 

the hazards of facilities within the land use.  Industrial land use suggests the cyclist is 

at fault; this may potentially reflect on mentality of the cyclist given the trip’s purpose.  
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The square root of the posted speed limit implicates the cyclist for greater speeds; 

while not a strong factor, it may indicate, for example, that cyclists underestimate the 

time they have to make maneuvers.  A male cyclist is more likely to be found in 

violation than his female counterpart; this may point to the aggressive nature of males 

in their cycling.  While ethnicity/race in itself does not implicate the cyclist, being 

black may, via correlations external to this study5, reflect upon some characteristics 

that do implicate the cyclist.  Facing traffic implicates the cyclist; this may be because 

facing traffic, while the law for pedestrians on the roadway, is generally illegal for 

cyclists.  Weekend suggests that the cyclist is not at fault; this may be a result of a 

potential shift in trip purpose.  Both traffic signs and traffic signals implicate the 

cyclist to a degree; perhaps this stems from the bike’s limited stopping and strenuous 

restarting and, hence, cyclist’s general disregard for traffic controls. 

 

The interpretations are similar to those provided for the ordered probit.  For the 

variables that appear in both models, all affect the outcome in the same way except 

cyclist positioned on a bike path and presence of a traffic sign.  These discrepancies 

may not indicate a true inconsistency between the models: for example, the presence 

of a traffic sign positively affects both equations in the bivariate probit the relative 

magnitude there between demonstrates the results of the ordered probit.  Similarity in 

interpretations is good because it shows the factors identified share a distinct 

relationship.  This goes to the strength of interpretations made upon the variables.  

However, it should again be noted that such interpretations are merely a subset of the 

many viable interpretations that could be made for each variable.  The greater value 

of these brief interpretations is a place to start the process of finding which factors 

implicate which party, how, and why.  The reader is encouraged to further ponder the 

physical meaning of the variables. 

 
                                                 
5 For example, ethnicity/race may, for historical reasons external to this study, be correlated with 
wealth. 
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5.3.4 Application 
 

The bivariate probit model has many applications.  As with the application of the 

ordered probit model discussed in section 5.1.4, the variables may be interpreted in 

terms of their respective coefficients in order to determine which factors implicate the 

driver or cyclist, how they do so, and why the do so.  From this, policy decisions may 

be made to, say, supply lights and reflective vests to increase visibility of the cyclist 

at night, if this were the reason that darkness implicates the cyclist. 

 

5.4 Comparison of Models 
 

As described in Chapter 1, an advantage of decision oriented modeling is that the 

decision itself is modeled.  Thus a comparison of the strongest models representing 

each perspective may be compared to describe how much one perspective accounts 

for the variance in the accuracy between that and another perspective.  The statistic 

by which to make this comparison is the ω2, described in section 3.3.2. 

 

The best model representing the civilian’s perspective is the ordered probit model 

with a mean of 62.3, a sample standard deviation of 0.599 and a sample of size two 

hundred thousand.  The best model representing the officer’s perspective is the sole-

fault estimated bivariate probit model with a mean of 57.0, a sample standard 

deviation of 0.612, and a sample size of two hundred thousand.  The two-sample t-

statistic for independent samples as computed in equation 3-15 is t = 2141.59.  Thus, 

by equation 3-14, ω2 = .918. 

 

The form of the model thus reflects 92% of the variation in the accuracy of the 

models in simulation.  This is not trivial per the terms of the methodology which set 
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the threshold for significance at 50%.  Clearly, one model accounts for greater 

variation than the other.  While no hypothesis was made as to which perspective was 

to do better, knowing that there is such significance for the non-directional case 

allows one to state that, by inspection, the ordered probit representing the civilian’s 

perspective is stronger than the bivariate probit representing the officer’s perspective. 

 

The finding that the civilian’s perspective better explains the determination of the 

reporting police officer could be interpreted by some people to mean that the police 

officer is more likely to miss the violations of the less offensive party – an accusation 

that suggests bias in the testimony of witnesses, or worse, bias in the collection and 

interpretation of evidence and other forms of corruption.  Certainly, the severity 

associated with an improper interpretation of this phenomenon is great.  It is therefore 

important to brainstorm and ponder the viability of many possible other factors 

contributing to the prevalence of the civilian’s perspective.  For example, take into 

consideration the possibility of the presence of important factors not included in the 

model that qualify the magnitude of violations.  Furthermore, consider whether the 

models of the decisions themselves best reflect the decision making process rather 

than simply better reflecting the process. 

 

Some food for thought, consider why determinations of fault in the legal sense are 

reserved for the insurance companies and the courts.  This process allows parties 

involved a chance, if required, to sort out the soundness of testimony by witnesses, to 

confront the logic of the law enforcement personnel involved, etc.  Perhaps, in this 

manner, a model that always finds fault may be productive for insurance companies 

to assign legal fault to the parties involved and allow the courts to clarify; although a 

model based on the actual determination of fault by such companies and courts would 

be more powerful. 
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Chapter 6 
 

Conclusions 
 

 

To determine the relationship of factors contributing to the fault of parties in cyclist-

motorist collisions, there are two perspectives on which to base models: the civilian’s 

perspective, and the officer’s perspective.  The civilian’s perspective recognizes the 

role of the severity of the infraction in the determination of the party at fault.  The 

relative severity of the parties’ infractions may be represented by an ordered fault line 

and fitted by an ordered probit model.  The officer’s perspective recognizes the 

limited and reserved role of an “officer” making the determination of fault 

independently of each party.  The independent nature of this determination allows 

each party’s fault to be determined individually by a binary probit model and 

combined in simulation.  To acknowledge that the “officer” is a single entity, the 

variations thereby may be taken into account through simultaneously estimating the 

two outcomes by a bivariate probit model. 

 

Table 6-1 summarizes the performance of the various models included in this study.  

The ordered probit and sole-fault estimated bivariate probit capture the relationships 

well, with median 64% and 57% accuracies respectively.  The model’s strong 

capturing of the relationship allows for interpretations to be made upon their 
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coefficients to provide a start for future in-depth studies for such purposes as setting 

policy. 

 

TABLE 6-1. Summary of Models’ Performance 

Model Percent Accuracy 
with at least 99% Confidence 

Ordered Probit 
On Estimation Dataset 
On Simulation Dataset 

 
62.5% 
60.9% 

Binary Probit 
Partial-Fault Estimation 
Sole-Fault Estimation 

 
53.2% 
54.8% 

Bivariate Probit 
Partial-Fault Estimation 
Sole-Fault Estimation 

 
53.2% 
55.6% 

 

As stated in the data description, “fault” is not present in the legal sense of the term 

but rather in the sense that a party committed a violation.  Thus the inferences made 

are upon factors contributing to the propensity of a party being in violation.  These 

inferences are made with respect to interests in the public sector such as public policy 

or education and the private sector such as market research, but before making those 

inferences, the best model on which to base them should be selected. 

 

Again, the best models here are the ordered probit and the sole-fault estimated 

bivariate probit.  Since the coefficients in both models are similar, either model may 

be used for making inferences upon those coefficients.  In consideration of only the 

coefficients, it is simpler to interpret them with respect to the motorist and cyclist 

separately as presented in the bivariate probit.  An example of a policy 

recommendation that may come from this is the interpretation of the positive 

coefficient (implicating the party) on the factor of driveway in the cyclist equation to 

mean that cyclists are not granted adequate legal protections on these facilities.  

Another example of a public policy is educating the public of the increased likelihood 



 

72

of a violation to be committed in turning by the cyclist as indicated by the positive 

coefficient in the cyclist equation suggesting that cyclists should have a rearview 

mirror affixed to their helmets.  There is also interest in making inferences based on 

the relevant decision process. 

 

Comparisons of the models provides insights into which perspective better describes 

the decision making process.  Based on the ω2 statistic, the difference in models 

between the ordered probit representing the civilian’s perspective and the sole-fault 

bivariate probit representing the officer’s perspective accounts for 92% of the 

variation there between.  Since the ordered probit is the stronger of the two, further 

studies may be undertaken with regard to the presence of the civilian’s perspective in 

police officer’s reporting of violations, and what, if anything, should be done about it.  

Additionally, the model’s high accuracy in prediction may quite possibly be 

extrapolated for usage by insurance companies for adjusting rates – particularly 

because the rate adjustment process need not be transparent to the insured party; 

however, without basing fault present in the legal sense, it is unlikely that an 

insurance company may try to utilize this in their assignment of fault in claims. 

 

There is more to want: a dataset containing determinations in the legal sense would 

yield a more powerful model; knowledge that the observations are representative 

outside of the boundaries of North Carolina; and others.  Yet, the methods presented 

of utilizing decision oriented models based on hypothesized perspectives, simulating 

and comparing models as independent variables themselves are transferable to these 

other applications.  Indeed these methods are the greatest contribution of this study to 

the field. 

 

The future should look to modeling fault in its legal sense.  With this more powerful 

definition of fault, conclusions may provide insight into matters of greater interest: 
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courtroom selection, actuarial sciences, lawmaking, stronger interpretations of factors, 

etc.  Additionally, improvements may be made by further studying more complex 

decision making processes and working with their associated models to appropriately 

select the best distribution or combinations of distributions.  Implementation may 

begin by compiling data from courthouses.  Meanwhile hypotheses may be made 

regarding the plausible decision making processes and models selected to represent 

them.  Following creation of the strongest models for each perspective, simulation 

may occur and accuracies compared; thus allowing insight into the decision making 

process.  Furthermore, the factors present within each model may be interpreted for 

such uses as policy formulation.   
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Appendix A 
 

Police Report Form 
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Appendix B 
 

Stata® Modeling Commands 
 

Data Preparation 
DataPrep11-09-2005.do 

clear 
set memory 10m 
set matsize 100 
 
insheet using "C:\DATA\Bike2005-09-29\bikeacc.csv", comma 
 
gen fault = 1 * faulttwo + 0*faultnon + 2*faultdr + 3*faultbik 
gen ofault = -1*faultdr + 0*faulttwo + 1*faultbik  
 
gen weekend = 0 
replace weekend = 1 if(day == 1 | day == 7) 
 
gen bikage2 = bikage^2 
gen lnbikage = ln(bikage) 
gen drage2 = drage^2 
gen lndrage = ln(drage) 
 
//Sharing the blame 
gen partbik = 0 
replace partbik = 1 if(faulttwo == 1 | faultbik == 1) 
gen partdr = 0 
replace partdr = 1 if(faulttwo == 1 | faultdr == 1) 
 
gen spdlimit05 = spdlimit^0.5 
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Estimation of the Ordered Probit 
oprobit 11-15-2005 with export.do 

quietly do "C:\thesis_calcs\DataPrep11-09-2005.do" 
 
oprobit ofault helmetus vehspeed bikage lnbikage drdrink drage lndrage 

dawndusk darklit darknlit speed bturn movert mturn rain comm facetrf 
bikblack drway bikelane bikepath sidecros trfsign trfsigl trfothr weekend 
if(faultnon == 0) //11-13-2005 

predict r1 r2 r3 
sum r1 r2 r3 
 
set more off 
biprobit (faultdr = drage drage2 drdrink speed movert mturn drway clear 

dawndusk darklit darknlit comm inst farm weekend suv motcycle drblack 
drnativ drhisp drother spdlimit) (faultbik = bikage bikage2 helmetus bturn 
dawndusk darknlit darklit bikelane bikepath drway comm indu spdlimit05 
bikmale bikblack facetrf weekend) if(faultbik == 1 | faultdr == 1) 

predict temp, p11 
set more on 
 
keep if (r1 < .) 
sum crsh_id fault r1 r2 r3 
outsheet crsh_id fault r1 r2 r3 using "C:\oprobit-FullDataset-sm.raw", comma 

replace 
 
keep if(fault<. & temp <.) 
sum crsh_id fault r1 r2 r3 
outsheet crsh_id fault r1 r2 r3 using "C:\oprobit-FaultDataset-sm.raw", comma 

replace 
 
quietly do "C:\thesis_calcs\DataPrep11-09-2005.do" 
oprobit ofault helmetus vehspeed bikage lnbikage drdrink drage lndrage 

dawndusk darklit darknlit speed bturn movert mturn rain comm facetrf 
bikblack drway bikelane bikepath sidecros trfsign trfsigl trfothr weekend 
if(faultnon == 0) //11-13-2005 

predict r1 r2 r3 
sum r1 r2 r3 
 
keep if(e(sample)) 
sum crsh_id fault r1 r2 r3 
outsheet crsh_id fault r1 r2 r3 using "C:\oprobit-eSampleDataset-sm.raw", 

comma replace 
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Estimation of the Partial-Fault Binary Probit 
probit 11-15-2005.do 

quietly do "C:\thesis_calcs\DataPrep11-09-2005.do" 
 
quietly probit partbik bikage bikage2 helmetus bturn dawndusk darknlit darklit 

bikelane bikepath drway comm indu spdlimit05 bikmale bikblack facetrf 
weekend trfsign trfsigl if(faultnon == 0) 

predict part1 // part biker 
gen samplebik = 0 
replace samplebik = 1 if(e(sample)) 
 
probit partdr drage drage2 drdrink speed movert mturn drway clear dawndusk 

darklit darknlit comm inst farm weekend suv motcycle drblack drnativ 
drhisp drother spdlimit trfsign trfsigl trfothr if(faultnon == 0 & part1 < .) 

predict pbdr // part driver 
gen sampledr = 0 
replace sampledr = 1 if(e(sample)) 
 
 
probit partbik bikage bikage2 helmetus bturn dawndusk darknlit darklit 

bikelane bikepath drway comm indu spdlimit05 bikmale bikblack facetrf 
weekend trfsign trfsigl if(faultnon == 0 & pbdr < .) 

predict pbbik // part biker 
 
sum crsh_id fault pbdr pbbik 
 
keep if(pbdr < . & pbbik < .) 
sum crsh_id fault pbdr pbbik 
outsheet crsh_id fault pbdr pbbik using "C:\probit-FullDataSet-sm.raw", 

comma replace 
 
keep if(fault < .) 
sum crsh_id fault pbdr pbbik 
outsheet crsh_id fault pbdr pbbik using "C:\probit-FaultDataSet-sm.raw", 

comma replace 
 
 
keep if(samplebik == 1 & sampledr == 1) 
sum crsh_id fault pbdr pbbik 
outsheet crsh_id fault pbdr pbbik using "C:\probit-eSampleDataSet-sm.raw", 

comma replace 
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Estimation of the Sole-Fault Binary Probit 
probit sm 11-15-2005.do 

quietly do "C:\thesis_calcs\DataPrep11-09-2005.do" 
 
quietly probit faultbik bikage bikage2 helmetus bturn dawndusk darknlit 

darklit bikelane bikepath drway comm indu spdlimit05 bikmale bikblack 
facetrf weekend trfsign trfsigl if(faultbik == 1 | faultdr == 1) 

predict part1 
gen samplebik = 0 
replace samplebik = 1 if(e(sample)) 
 
probit faultdr drage drage2 drdrink speed movert mturn drway clear dawndusk 

darklit darknlit comm inst farm weekend suv motcycle drblack drnativ 
drhisp drother spdlimit trfsign trfsigl trfothr if((faultbik == 1 | faultdr == 1) 
& part1 < .) 

predict pbdr 
gen sampledr = 0 
replace sampledr = 1 if(e(sample)) 
 
probit faultbik bikage bikage2 helmetus bturn dawndusk darknlit darklit 

bikelane bikepath drway comm indu spdlimit05 bikmale bikblack facetrf 
weekend trfsign trfsigl if((faultbik == 1 | faultdr == 1) & pbdr < .) 

predict pbbik 
 
sum crsh_id fault pbdr pbbik 
 
keep if(pbdr < . & pbbik < .) 
sum crsh_id fault pbdr pbbik 
outsheet crsh_id fault pbdr pbbik using "C:\probit_sm-FullDataSet-sm.raw", 

comma replace 
 
keep if(fault < .) 
sum crsh_id fault pbdr pbbik 
outsheet crsh_id fault pbdr pbbik using "C:\probit_sm-FaultDataSet-sm.raw", 

comma replace 
 
 
keep if(samplebik == 1 & sampledr == 1) 
sum crsh_id fault pbdr pbbik 
outsheet crsh_id fault pbdr pbbik using "C:\probit_sm-eSampleDataSet-

sm.raw", comma replace 
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Estimation of the Partial-Fault Bivariate Probit 
biprobit 11-13-2005.do 

quietly do "C:\thesis_calcs\DataPrep11-09-2005.do" 
 
probit partdr drage drage2 drdrink speed movert mturn drway clear dawndusk 

darklit darknlit comm inst farm weekend suv motcycle drblack drnativ 
drhisp drother spdlimit trfsign trfsigl trfothr if(faultnon == 0) 

probit partbik bikage bikage2 helmetus bturn dawndusk darknlit darklit 
bikelane bikepath drway comm indu spdlimit05 bikmale bikblack facetrf 
weekend trfsign trfsigl if(faultnon == 0) 

 
set more off 
 
biprobit (partdr  = drage drage2 drdrink speed movert mturn drway clear 

dawndusk darklit darknlit comm inst farm weekend suv motcycle drblack 
drnativ drhisp drother spdlimit trfsign trfsigl trfothr) (partbik  = bikage 
bikage2 helmetus bturn dawndusk darknlit darklit bikelane bikepath drway 
comm indu spdlimit05 bikmale bikblack facetrf weekend trfsign trfsigl) 
if(faultnon == 0) 

 
set more on 
 
predict pb11, p11 
predict pb10, p10 
predict pb01, p01 
predict pb00, p00 
sum crsh_id fault pb11 pb10 pb01 pb00 
 
keep if (pb11 < .) 
sum crsh_id fault pb11 pb10 pb01 pb00 
outsheet crsh_id fault pb11 pb10 pb01 pb00 using "C:\biprobit-FullDataset-

sm.raw", comma replace 
 
keep if(fault<.) 
sum crsh_id fault pb11 pb10 pb01 pb00 
outsheet crsh_id fault pb11 pb10 pb01 pb00 using "C:\biprobit-FaultDataset-

sm.raw", comma replace 
 
keep if(e(sample)) 
sum crsh_id fault pb11 pb10 pb01 pb00 
outsheet crsh_id fault pb11 pb10 pb01 pb00 using "C:\biprobit-

eSampleDataset-sm.raw", comma replace 
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Estimation of the Sole-Fault Bivariate Probit 
biprobit sm 11-13-2005.do 

quietly do "C:\thesis_calcs\DataPrep11-09-2005.do" 
 
probit faultdr drage drage2 drdrink speed movert mturn drway clear dawndusk 

darklit darknlit comm inst farm weekend suv motcycle drblack drnativ 
drhisp drother spdlimit trfsign trfsigl trfothr if(faultbik == 1 | faultdr == 1) 

probit faultbik bikage bikage2 helmetus bturn dawndusk darknlit darklit 
bikelane bikepath drway comm indu spdlimit05 bikmale bikblack facetrf 
weekend trfsign trfsigl if(faultbik == 1 | faultdr == 1) 

 
set more off 
 
biprobit (faultdr = drage drage2 drdrink speed movert mturn drway clear 

dawndusk darklit darknlit comm inst farm weekend suv motcycle drblack 
drnativ drhisp drother spdlimit trfsign trfsigl trfothr) (faultbik = bikage 
bikage2 helmetus bturn dawndusk darknlit darklit bikelane bikepath drway 
comm indu spdlimit05 bikmale bikblack facetrf weekend trfsign trfsigl) 
if(faultbik == 1 | faultdr == 1) 

 
set more on 
 
predict pb11, p11 
predict pb10, p10 
predict pb01, p01 
predict pb00, p00 
sum crsh_id fault pb11 pb10 pb01 pb00 
 
keep if (pb11 < .) 
sum crsh_id fault pb11 pb10 pb01 pb00 
outsheet crsh_id fault pb11 pb10 pb01 pb00 using "C:\biprobit_sm-

FullDataset-sm.raw", comma replace 
 
keep if(fault<.) 
sum crsh_id fault pb11 pb10 pb01 pb00 
outsheet crsh_id fault pb11 pb10 pb01 pb00 using "C:\biprobit_sm-

FaultDataset-sm.raw", comma replace 
 
keep if(e(sample)) 
sum crsh_id fault pb11 pb10 pb01 pb00 
outsheet crsh_id fault pb11 pb10 pb01 pb00 using "C:\biprobit_sm-

eSampleDataset-sm.raw", comma replace 
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Appendix C 
 

Perl Simulation Scripts 
 

Simulate the Ordered Probit Model 
#Input:  Oprobit prediction file set in .raw format below 
#            "ID_No,Fault,r1,r2,r3" 
#Output: Percent correct predictions 
#            "Iteration,Pct_Correct" 
 
my @oprobit_files = ("oprobit-FaultDataset-sm.raw","oprobit-
eSampleDataset-sm.raw"); 
my $itterations  = 200000; 
 
foreach my $file (@oprobit_files) 
{ 
 if(open(IN,"<$file")) 
 { 
  if(open(OUT, ">pred_$file")) 
  { 
   print OUT "ITT_No,Pct_Correct\n"; 
   my @table = (); 
   while(<IN>) 
   { 
    chomp; 
    push @table, [ split /,/ ]; 
   } 
 
   for(my $i=1; $i<$itterations+1; $i++) 
   { 
    my $correct=0; 
    for(my $row=1;$row<$#table+1;$row++) 
    { 
     my $rnd1 = rand(); 
     if($rnd1<$table[$row][2]) 
     { 
      if($table[$row][1] == 2) 
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Simulate the Ordered Probit Model (cont’d) 
      { 
       $correct++; 
      } 
     } 
     elsif($rnd1<$table[$row][2]+$table[$row][3]) 
     { 
      if($table[$row][1] == 1) 
      { 
       $correct++; 
      } 
     } 
     else #Only 3 Options 
     { 
      if($table[$row][1] == 3) 
      { 
       $correct++; 
      } 
     } 
    } 
    my $pct_correct = $correct*100/$#table; 
    print OUT "$i,$pct_correct\n"; 
   } 
   close OUT; 
  } 
  close IN; 
 } 
} 

 
 
 

Simulate Ordered Probit Model for Case Study: 
Neither at Fault Treated as Both at Fault 

#Input:  Oprobit prediction file set in .raw format below 
#            "ID_No,Fault,r1,r2,r3" 
#Output: Percent correct predictions 
#            "Iteration,Pct_Correct" 
 
my @oprobit_files = ("oprobit-eSampleDataset-sm.raw"); 
my $itterations  = 200000; 
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Simulate Ordered Probit Model for Case (cont’d) 
foreach my $file (@oprobit_files) 
{ 
 if(open(IN,"<$file")) 
 { 
  if(open(OUT, ">faultnon_eq_faulttwo_pred_$file")) 
  { 
   print OUT "ITT_No,Pct_Correct\n"; 
   my @table = (); 
   while(<IN>) 
   { 
    chomp; 
    push @table, [ split /,/ ]; 
   } 
   for(my $i=1; $i<$itterations+1; $i++) 
   { 
    my $correct=0; 
    for(my $row=1;$row<$#table+1;$row++) 
    { 
     my $rnd1 = rand(); 
     if($rnd1<$table[$row][2]) 
     { 
      if($table[$row][1] == 2) 
      { 
       $correct++; 
      } 
     } 
     elsif($rnd1<$table[$row][2]+$table[$row][3]) 
     { 
      if($table[$row][1] == 1) 
      { 
       $correct++; 
      } 
     } 
     else #Only 3 Options 
     { 
      if($table[$row][1] == 3 || $table[$row][1] == 0)  
      #both at fault or neither at fault "correct" 
      { 
       $correct++; 
      } 
     } 
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Simulate Ordered Probit Model for Case (cont’d) 
    } 
    my $pct_correct = $correct*100/$#table; 
    print OUT "$i,$pct_correct\n"; 
   } 
   close OUT; 
  } 
  close IN; 
 } 
} 

 

 

Simulate the Binary Probit Models 
#Input:  Probit prediction file set in .raw format below 
#            "ID_No,Fault,Driver,Bike" 
#Output: Percent correct predictions 
#            "Iteration,Pct_Correct" 
 
my @probit_files = ("probit_sm-FaultDataset-sm.raw","probit_sm-
eSampleDataset-sm.raw", "probit-FaultDataset-sm.raw","probit-
eSampleDataset-sm.raw"); 
my $itterations  = 200000; 
 
foreach my $file (@probit_files) 
{ 
 if(open(IN,"<$file")) 
 { 
  if(open(OUT, ">pred_$file")) 
  { 
   print OUT "ITT_No,Pct_Correct\n"; 
   my @table = (); 
   while(<IN>) 
   { 
    chomp; 
    push @table, [ split /,/ ]; 
   } 
 
   for(my $i=1; $i<$itterations+1; $i++) 
   { 
    my $correct=0; 
    for(my $row=1;$row<$#table+1;$row++) 
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Simulate the Binary Probit Models (cont’d) 
    { 
     my $rnd1 = rand(); 
     my $rnd2 = rand(); 
     if($rnd1<$table[$row][2] && $rnd2<$table[$row][3]) 
     { 
      if($table[$row][1] == 1) 
      { 
       $correct++; 
      } 
     } 
     elsif($rnd1<$table[$row][2]) 
     { 
      if($table[$row][1] == 2) 
      { 
       $correct++; 
      } 
     } 
     elsif($rnd2<$table[$row][3]) 
     { 
      if($table[$row][1] == 3) 
      { 
       $correct++; 
      } 
     } 
     else 
     { 
      if($table[$row][1] == 0) 
      { 
       $correct++; 
      } 
     } 
    } 
    my $pct_correct = $correct*100/$#table; 
    print OUT "$i,$pct_correct\n"; 
   } 
   close OUT; 
  } 
  close IN; 
 } 
} 
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Simulate the Bivariate Probit Models 
#Input:  Biprobit prediction file set in .raw format below 
#            "ID_No,Fault,pb11,pb10,pb01,pb00" 
#Output: Percent correct predictions 
#            "Iteration,Pct_Correct" 
 
my @biprobit_files = (“biprobit_sm-FaultDataset-sm.raw","biprobit_sm-
eSampleDataset-sm.raw","biprobit-FaultDataset-sm.raw","biprobit-
eSampleDataset-sm.raw"); 
my $itterations  = 200000; 
 
foreach my $file (@biprobit_files) 
{ 
 if(open(IN,"<$file")) 
 { 
  if(open(OUT, ">pred_$file")) 
  { 
   print OUT "ITT_No,Pct_Correct\n"; 
   my @table = (); 
   while(<IN>) 
   { 
    chomp; 
    push @table, [ split /,/ ]; 
   } 
 
   for(my $i=1; $i<$itterations+1; $i++) 
   { 
    my $correct=0; 
    for(my $row=1;$row<$#table+1;$row++) 
    { 
     my $rnd1 = rand(); 
     if($rnd1<$table[$row][2]) 
     { 
      if($table[$row][1] == 1) 
      { 
       $correct++; 
      } 
     } 
     elsif($rnd1<$table[$row][2]+$table[$row][3]) 
     { 
      if($table[$row][1] == 2) 
      { 



 

88

Simulate the Bivariate Probit Models (cont’d) 
       $correct++; 
      } 
     } 
    
 elsif($rnd1<$table[$row][2]+$table[$row][3]+$table[$row][4]) 
     { 
      if($table[$row][1] == 3) 
      { 
       $correct++; 
      } 
     } 
     else 
     { 
      if($table[$row][1] == 0) 
      { 
       $correct++; 
      } 
     } 
    } 
    my $pct_correct = $correct*100/$#table; 
    print OUT "$i,$pct_correct\n"; 
   } 
   close OUT; 
  } 
  close IN; 
 } 
} 

 

 

Create Densities 
#Input:  Prediction file set in .raw format below 
#            "ITT_No,Pct_Correct" 
#Output: Percent correct predictions 
#            "Cumdensity,Pct_Correct" 
 
my @files = ("pred_biprobit_sm-FaultDataset-sm.raw","pred_biprobit_sm-
eSampleDataset-sm.raw", " pred_biprobit-FaultDataset-
sm.raw","pred_biprobit-eSampleDataset-sm.raw", "pred_probit_sm-
FaultDataset-sm.raw","pred_probit_sm-eSampleDataset-sm.raw", " 
pred_probit-FaultDataset-sm.raw","pred_probit-eSampleDataset-sm.raw ",  



 

89

Create Densities (cont’d) 
"pred_oprobit_sm-FaultDataset-sm.raw","pred_oprobit_sm-eSampleDataset-
sm.raw"); 
foreach my $file (@files) 
{ 
 if(open(IN,"<$file")) 
 { 
  if(open(OUT, ">cum_$file")) 
  { 
   my $head1; 
   my $head2; 
   my @itt = (); 
   my @pct = (); 
   my @a = (); 
   while(<IN>) 
   { 
    chomp(); 
    @a = split /,/; 
    push @itt, $a[0]; 
    push @pct, $a[1]; 
   } 
   $head1 = shift @itt; 
   $head2 = shift @pct; 
   while(($#itt+2)%100) 
   { 
    pop @itt; 
    pop @pct; 
   } 
   @pct = sort @pct; 
   foreach my $i (@itt) 
   { 
    $i = 100-($i/($#itt+2))*100; 
   } 
   print OUT "cumdensity,pct_correct\n"; 
   for(my $j=0;$j<$#itt+1;$j++) 
   { 
    print OUT "$itt[$j],$pct[$j]\n"; 
   } 
   close OUT; 
  } 
 } 
} 
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